- 21 4月, 2023 1 次提交
-
-
由 tianshuo78520a 提交于
* mv inference/api infer_ut * mv test * merge develop fix error * fix * fix build error * fix build error * fix bug * fix tester_helper.h * fix analyzer_transformer_profile_tester.cc * fix * fix mac * fix mac * fix error * fix * fix
-
- 28 2月, 2023 1 次提交
-
-
由 joanna.wozna.intel 提交于
* Add gru qat int8 test * Change place of model downloading * Update paddle/fluid/inference/tests/api/CMakeLists.txt Co-authored-by: NSławomir Siwek <slawomir.siwek@intel.com> * Correct flags names and add description --------- Co-authored-by: NSławomir Siwek <slawomir.siwek@intel.com>
-
- 09 11月, 2022 1 次提交
-
-
由 Paulina Gacek 提交于
* Analysis API interface for disabling fc passes * Unit tests corrected * Python API added * test runs only when PADDLE_WITH_MKLDNN * Fc op changed to relu in matmul_op_test * Disable fc passes in tests where acc drops * code formating * Unit test for analysisConf added * Unit test gpu added * fc passes disabled when iterations=0 in gru test * style * passes disabled when fp32 in gru test * fc passes disabled in lstm test * Import from inference, not fluid in doc
-
- 26 6月, 2022 1 次提交
-
-
由 Sing_chan 提交于
-
- 05 6月, 2022 1 次提交
-
-
由 Sing_chan 提交于
-
- 12 5月, 2022 1 次提交
-
-
由 Shuangchi He 提交于
-
- 27 8月, 2021 1 次提交
-
-
由 joanna.wozna.intel 提交于
* Add calculation for gru op * Correct the types * Remove mkldnn only * Correct mkldnn ifdef * Remove mkldnn ifdef * Separate mkldnn quantizer test * Correct Windows test * Check different cmake fix * Revert cmake change * Cmake change 2 * Cmake change 3
-
- 12 6月, 2021 1 次提交
-
-
由 joanna.wozna.intel 提交于
* Small changes related to BF16 fusion_gru and fusion_lstm * Correct to pass arg by value * Add conditions to rnn op * Correct the spelling mistake * Improving the test with checking activation * Trigger CI
-
- 25 2月, 2021 1 次提交
-
-
由 joanna.wozna.intel 提交于
-
- 29 10月, 2020 1 次提交
-
-
由 lidanqing 提交于
* enable infer model running CAPI * output size should bigger than 0
-
- 11 8月, 2020 1 次提交
-
-
由 lidanqing 提交于
* Add laxical GRU unit test performance works * Get model accuracy * model and data name to be confirmed test=develop * update model name and output format test=develop * update according to reviews test=develop * add accuracy check * accuracy check between native and analysis test=develop * fix a reading bug, fix gru passes sequence test=develop * fix passes sequence test=develop
-