Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ffd8adca
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2305
Star
20932
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ffd8adca
编写于
8月 08, 2022
作者:
H
Haohongxiang
提交者:
GitHub
8月 08, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix_bugs_of_sharding (#44982)
上级
031debb7
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
81 addition
and
27 deletion
+81
-27
python/paddle/distributed/fleet/base/fleet_base.py
python/paddle/distributed/fleet/base/fleet_base.py
+2
-3
python/paddle/distributed/sharding/group_sharded.py
python/paddle/distributed/sharding/group_sharded.py
+1
-1
python/paddle/fluid/tests/unittests/dygraph_group_sharded_api.py
...paddle/fluid/tests/unittests/dygraph_group_sharded_api.py
+42
-11
python/paddle/fluid/tests/unittests/dygraph_group_sharded_api_eager.py
.../fluid/tests/unittests/dygraph_group_sharded_api_eager.py
+36
-12
未找到文件。
python/paddle/distributed/fleet/base/fleet_base.py
浏览文件 @
ffd8adca
...
...
@@ -1856,9 +1856,8 @@ class Fleet(object):
group
=
None
)
self
.
_found_inf
=
is_found_inf
.
numpy
()[
0
]
# Only tensor_parallel and pipeline_parallel need to modify scaler
if
self
.
_hcg
.
get_parallel_mode
()
in
(
ParallelMode
.
TENSOR_PARALLEL
,
ParallelMode
.
PIPELINE_PARALLEL
):
# Only data_parallel doesn't need to modify scaler
if
self
.
_hcg
.
get_parallel_mode
()
is
not
ParallelMode
.
DATA_PARALLEL
:
scaler
.
_unscale
=
MethodType
(
unscale_method
,
scaler
)
return
scaler
python/paddle/distributed/sharding/group_sharded.py
浏览文件 @
ffd8adca
...
...
@@ -159,7 +159,7 @@ def group_sharded_parallel(model,
sync_comm
=
sync_comm
)
else
:
raise
ValueError
(
"Please enter the correct level."
)
if
params_fp16
and
isinstance
(
scaler
,
paddle
.
amp
.
GradScaler
):
if
isinstance
(
scaler
,
paddle
.
amp
.
GradScaler
):
if
in_dygraph_mode
():
scaler
=
GroupShardedScaler
(
scaler
)
else
:
...
...
python/paddle/fluid/tests/unittests/dygraph_group_sharded_api.py
浏览文件 @
ffd8adca
...
...
@@ -61,7 +61,7 @@ def reader_decorator(linear_size=1000):
return
__reader__
def
optimizer_setting
(
model
,
use_
pure_fp16
,
opt_group
=
False
):
def
optimizer_setting
(
model
,
use_
multi_precision
,
opt_group
=
False
):
clip
=
paddle
.
nn
.
ClipGradByGlobalNorm
(
clip_norm
=
1.0
)
optimizer
=
paddle
.
optimizer
.
Momentum
(
parameters
=
[{
...
...
@@ -70,16 +70,23 @@ def optimizer_setting(model, use_pure_fp16, opt_group=False):
learning_rate
=
0.001
,
weight_decay
=
0.00001
,
grad_clip
=
clip
,
multi_precision
=
use_
pure_fp16
)
multi_precision
=
use_
multi_precision
)
return
optimizer
def
train_mlp
(
model
,
shard_level
,
use_pure_fp16
,
output_dir
):
def
train_mlp
(
model
,
shard_level
,
use_multi_precision
,
output_dir
,
amp_level
=
'O1'
):
group
=
paddle
.
distributed
.
new_group
([
0
,
1
])
optimizer
=
optimizer_setting
(
model
=
model
,
use_pure_fp16
=
use_pure_fp16
)
model
=
paddle
.
amp
.
decorate
(
models
=
model
,
level
=
'O2'
,
save_dtype
=
'float32'
)
optimizer
=
optimizer_setting
(
model
=
model
,
use_multi_precision
=
use_multi_precision
)
model
=
paddle
.
amp
.
decorate
(
models
=
model
,
level
=
amp_level
,
save_dtype
=
'float32'
)
scaler
=
paddle
.
amp
.
GradScaler
(
init_loss_scaling
=
32768
)
model
,
optimizer
,
scaler
=
group_sharded_parallel
(
model
=
model
,
...
...
@@ -104,13 +111,13 @@ def train_mlp(model, shard_level, use_pure_fp16, output_dir):
img
,
label
=
data
label
.
stop_gradient
=
True
img
.
stop_gradient
=
True
with
paddle
.
amp
.
auto_cast
(
True
,
level
=
'O2'
):
with
paddle
.
amp
.
auto_cast
(
True
,
level
=
amp_level
):
out
=
model
(
img
)
loss
=
paddle
.
nn
.
functional
.
cross_entropy
(
input
=
out
,
label
=
label
)
avg_loss
=
paddle
.
mean
(
x
=
loss
.
cast
(
dtype
=
paddle
.
float32
))
if
not
use_
pure_fp16
:
if
not
use_
multi_precision
:
avg_loss
.
backward
()
optimizer
.
step
()
else
:
...
...
@@ -135,12 +142,36 @@ def test_sharding_api():
# fp16
stage2_params
=
train_mlp
(
mlp1
,
shard_level
=
"os_g"
,
use_pure_fp16
=
True
,
output_dir
=
output_dir
)
use_multi_precision
=
True
,
output_dir
=
output_dir
,
amp_level
=
'O2'
)
stage3_params
=
train_mlp
(
mlp2
,
shard_level
=
"p_g_os"
,
use_pure_fp16
=
True
,
output_dir
=
output_dir
)
use_multi_precision
=
True
,
output_dir
=
output_dir
,
amp_level
=
'O2'
)
for
i
in
range
(
len
(
stage3_params
)):
np
.
testing
.
assert_allclose
(
stage2_params
[
i
].
numpy
(),
stage3_params
[
i
].
numpy
(),
rtol
=
1e-4
,
atol
=
1e-3
)
# AMP
mlp3
,
mlp4
=
MLP
(),
MLP
()
mlp3
.
set_state_dict
(
state_dict
)
mlp4
.
set_state_dict
(
state_dict
)
stage2_params
=
train_mlp
(
mlp3
,
shard_level
=
"os_g"
,
use_multi_precision
=
True
,
output_dir
=
output_dir
,
amp_level
=
'O1'
)
stage3_params
=
train_mlp
(
mlp4
,
shard_level
=
"p_g_os"
,
use_multi_precision
=
True
,
output_dir
=
output_dir
,
amp_level
=
'O1'
)
for
i
in
range
(
len
(
stage3_params
)):
np
.
testing
.
assert_allclose
(
stage2_params
[
i
].
numpy
(),
...
...
python/paddle/fluid/tests/unittests/dygraph_group_sharded_api_eager.py
浏览文件 @
ffd8adca
...
...
@@ -61,7 +61,7 @@ def reader_decorator(linear_size=1000):
return
__reader__
def
optimizer_setting
(
model
,
use_
pure_fp16
,
opt_group
=
False
):
def
optimizer_setting
(
model
,
use_
multi_precision
,
opt_group
=
False
):
clip
=
paddle
.
nn
.
ClipGradByGlobalNorm
(
clip_norm
=
1.0
)
optimizer
=
paddle
.
optimizer
.
Momentum
(
parameters
=
[{
...
...
@@ -70,14 +70,21 @@ def optimizer_setting(model, use_pure_fp16, opt_group=False):
learning_rate
=
0.001
,
weight_decay
=
0.00001
,
grad_clip
=
clip
,
multi_precision
=
use_
pure_fp16
)
multi_precision
=
use_
multi_precision
)
return
optimizer
def
train_mlp
(
model
,
shard_level
,
use_pure_fp16
,
output_dir
):
optimizer
=
optimizer_setting
(
model
=
model
,
use_pure_fp16
=
use_pure_fp16
)
model
=
paddle
.
amp
.
decorate
(
models
=
model
,
level
=
'O2'
,
save_dtype
=
'float32'
)
def
train_mlp
(
model
,
shard_level
,
use_multi_precision
,
output_dir
,
amp_level
=
'O1'
):
optimizer
=
optimizer_setting
(
model
=
model
,
use_multi_precision
=
use_multi_precision
)
model
=
paddle
.
amp
.
decorate
(
models
=
model
,
level
=
amp_level
,
save_dtype
=
'float32'
)
scaler
=
paddle
.
amp
.
GradScaler
(
init_loss_scaling
=
32768
)
model
,
optimizer
,
scaler
=
group_sharded_parallel
(
model
=
model
,
...
...
@@ -102,13 +109,13 @@ def train_mlp(model, shard_level, use_pure_fp16, output_dir):
img
,
label
=
data
label
.
stop_gradient
=
True
img
.
stop_gradient
=
True
with
paddle
.
amp
.
auto_cast
(
True
,
level
=
'O2'
):
with
paddle
.
amp
.
auto_cast
(
True
,
level
=
amp_level
):
out
=
model
(
img
)
loss
=
paddle
.
nn
.
functional
.
cross_entropy
(
input
=
out
,
label
=
label
)
avg_loss
=
paddle
.
mean
(
x
=
loss
.
cast
(
dtype
=
paddle
.
float32
))
if
not
use_
pure_fp16
:
if
not
use_
multi_precision
:
avg_loss
.
backward
()
optimizer
.
step
()
else
:
...
...
@@ -134,19 +141,36 @@ def test_sharding_api():
# fp16
stage2_params
=
train_mlp
(
mlp1
,
shard_level
=
"os_g"
,
use_pure_fp16
=
True
,
output_dir
=
output_dir
)
use_multi_precision
=
True
,
output_dir
=
output_dir
,
amp_level
=
'O2'
)
stage3_params
=
train_mlp
(
mlp2
,
shard_level
=
"p_g_os"
,
use_pure_fp16
=
True
,
output_dir
=
output_dir
)
use_multi_precision
=
True
,
output_dir
=
output_dir
,
amp_level
=
'O2'
)
for
i
in
range
(
len
(
stage3_params
)):
np
.
testing
.
assert_allclose
(
stage2_params
[
i
].
numpy
(),
stage3_params
[
i
].
numpy
(),
rtol
=
1e-4
,
atol
=
1e-3
)
shutil
.
rmtree
(
output_dir
)
# AMP
mlp3
,
mlp4
=
MLP
(),
MLP
()
mlp3
.
set_state_dict
(
state_dict
)
mlp4
.
set_state_dict
(
state_dict
)
stage2_params
=
train_mlp
(
mlp3
,
shard_level
=
"os_g"
,
use_multi_precision
=
True
,
output_dir
=
output_dir
,
amp_level
=
'O1'
)
stage3_params
=
train_mlp
(
mlp4
,
shard_level
=
"p_g_os"
,
use_multi_precision
=
True
,
output_dir
=
output_dir
,
amp_level
=
'O1'
)
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录