Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ff96a7d5
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ff96a7d5
编写于
8月 25, 2021
作者:
T
taixiurong
提交者:
GitHub
8月 25, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update elementwise api in kunlun (#35021)
上级
881e55e4
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
270 addition
and
384 deletion
+270
-384
cmake/external/xpu.cmake
cmake/external/xpu.cmake
+1
-1
paddle/fluid/operators/elementwise/elementwise_add_op_xpu.cc
paddle/fluid/operators/elementwise/elementwise_add_op_xpu.cc
+68
-109
paddle/fluid/operators/elementwise/elementwise_div_op_xpu.cc
paddle/fluid/operators/elementwise/elementwise_div_op_xpu.cc
+12
-9
paddle/fluid/operators/elementwise/elementwise_floordiv_op_xpu.cc
...luid/operators/elementwise/elementwise_floordiv_op_xpu.cc
+9
-4
paddle/fluid/operators/elementwise/elementwise_max_op_xpu.cc
paddle/fluid/operators/elementwise/elementwise_max_op_xpu.cc
+12
-9
paddle/fluid/operators/elementwise/elementwise_min_op_xpu.cc
paddle/fluid/operators/elementwise/elementwise_min_op_xpu.cc
+12
-9
paddle/fluid/operators/elementwise/elementwise_mul_op_xpu.cc
paddle/fluid/operators/elementwise/elementwise_mul_op_xpu.cc
+14
-10
paddle/fluid/operators/elementwise/elementwise_pow_op_xpu.cc
paddle/fluid/operators/elementwise/elementwise_pow_op_xpu.cc
+6
-2
paddle/fluid/operators/elementwise/elementwise_sub_op_xpu.cc
paddle/fluid/operators/elementwise/elementwise_sub_op_xpu.cc
+13
-9
paddle/fluid/operators/elementwise/elementwise_xpu.h
paddle/fluid/operators/elementwise/elementwise_xpu.h
+77
-221
paddle/fluid/platform/xpu/xpu2_op_list.h
paddle/fluid/platform/xpu/xpu2_op_list.h
+42
-0
python/paddle/fluid/tests/unittests/xpu/test_rmsprop_op_xpu.py
...n/paddle/fluid/tests/unittests/xpu/test_rmsprop_op_xpu.py
+4
-1
未找到文件。
cmake/external/xpu.cmake
浏览文件 @
ff96a7d5
...
...
@@ -35,7 +35,7 @@ ELSE ()
ENDIF
()
SET
(
XPU_BASE_URL_WITHOUT_DATE
"https://baidu-kunlun-product.cdn.bcebos.com/KL-SDK/klsdk-dev"
)
SET
(
XPU_BASE_URL
"
${
XPU_BASE_URL_WITHOUT_DATE
}
/202108
04
"
)
SET
(
XPU_BASE_URL
"
${
XPU_BASE_URL_WITHOUT_DATE
}
/202108
18
"
)
SET
(
XPU_XRE_URL
"
${
XPU_BASE_URL
}
/
${
XPU_XRE_DIR_NAME
}
.tar.gz"
CACHE STRING
""
FORCE
)
SET
(
XPU_XDNN_URL
"
${
XPU_BASE_URL
}
/
${
XPU_XDNN_DIR_NAME
}
.tar.gz"
CACHE STRING
""
FORCE
)
SET
(
XPU_XCCL_URL
"
${
XPU_BASE_URL_WITHOUT_DATE
}
/20210623/
${
XPU_XCCL_DIR_NAME
}
.tar.gz"
CACHE STRING
""
FORCE
)
...
...
paddle/fluid/operators/elementwise/elementwise_add_op_xpu.cc
浏览文件 @
ff96a7d5
...
...
@@ -23,93 +23,45 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
T
>
class
ElementwiseAddXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
// XPUElementwise<T>(ctx, xpu::add<T>);
// ToDo(QingshuChen): update this optimization to elementwise_xpu.h
auto
x_var
=
ctx
.
InputVar
(
"X"
);
PADDLE_ENFORCE_NE
(
x_var
,
nullptr
,
platform
::
errors
::
InvalidArgument
(
"Cannot get input Variable X"
));
PADDLE_ENFORCE_EQ
(
x_var
->
IsType
<
framework
::
LoDTensor
>
(),
true
,
platform
::
errors
::
InvalidArgument
(
"XPU only support LoDTensor, Input(X) is not LoDTensor"
));
auto
x
=
x_var
->
Get
<
framework
::
LoDTensor
>
();
auto
*
y
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Y"
);
auto
*
z
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
z
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
x_dims
=
x
.
dims
();
auto
y_dims
=
y
->
dims
();
int
max_dim
=
std
::
max
(
x_dims
.
size
(),
y_dims
.
size
());
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
axis
=
(
axis
==
-
1
?
std
::
abs
(
x_dims
.
size
()
-
y_dims
.
size
())
:
axis
);
XPUElementwise
<
T
,
XPUType
>
(
ctx
,
xpu
::
broadcast_add
<
XPUType
>
);
}
};
PADDLE_ENFORCE_GE
(
axis
,
0
,
platform
::
errors
::
InvalidArgument
(
"Axis should be great than or equal to 0, but received axis is %d."
,
axis
));
PADDLE_ENFORCE_LT
(
axis
,
max_dim
,
platform
::
errors
::
InvalidArgument
(
"Axis should be less than %d, but received axis is %d."
,
max_dim
,
axis
));
std
::
vector
<
int
>
x_dims_vec
(
max_dim
,
1
);
std
::
vector
<
int
>
y_dims_vec
(
max_dim
,
1
);
if
(
x_dims
.
size
()
==
max_dim
)
{
for
(
int
i
=
0
;
i
<
max_dim
;
i
++
)
{
x_dims_vec
[
i
]
=
x_dims
[
i
];
}
}
else
{
for
(
int
i
=
0
;
i
<
x_dims
.
size
();
i
++
)
{
x_dims_vec
[
i
+
axis
]
=
x_dims
[
i
];
}
static
std
::
vector
<
int
>
get_rdims
(
const
std
::
vector
<
int
>&
xdims
,
const
std
::
vector
<
int
>&
ydims
)
{
std
::
vector
<
int
>
rdims
;
for
(
size_t
i
=
0
;
i
<
xdims
.
size
();
i
++
)
{
if
(
xdims
[
i
]
!=
ydims
[
i
])
{
rdims
.
push_back
(
i
);
}
if
(
y_dims
.
size
()
==
max_dim
)
{
for
(
int
i
=
0
;
i
<
max_dim
;
i
++
)
{
y_dims_vec
[
i
]
=
y_dims
[
i
];
}
}
else
{
for
(
int
i
=
0
;
i
<
y_dims
.
size
();
i
++
)
{
y_dims_vec
[
i
+
axis
]
=
y_dims
[
i
];
}
}
const
T
*
x_data
=
x
.
data
<
T
>
();
const
T
*
y_data
=
y
->
data
<
T
>
();
T
*
z_data
=
z
->
data
<
T
>
();
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
XPUDeviceContext
>();
int
ret
=
xpu
::
SUCCESS
;
ret
=
xpu
::
broadcast_add
<
T
>
(
dev_ctx
.
x_context
(),
x_data
,
y_data
,
z_data
,
x_dims_vec
,
y_dims_vec
);
PADDLE_ENFORCE_EQ
(
ret
,
xpu
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel Elementwise occur error in XPUElementwise error code "
,
ret
,
XPUAPIErrorMsg
[
ret
]));
}
};
return
rdims
;
}
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
T
>
class
ElementwiseAddGradXPUKernel
:
public
ElemwiseGradKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
ElemwiseGradKernel
<
T
>::
Compute
(
ctx
);
// XPUElementwiseGrad<T>(ctx, xpu::add_grad<T>, false);
auto
*
x
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Y"
);
auto
*
dz
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dx
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dy
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
const
framework
::
DDim
&
x_dims
=
x
->
dims
();
const
framework
::
DDim
&
y_dims
=
y
->
dims
();
int
max_dim
=
std
::
max
(
x_dims
.
size
(),
y_dims
.
size
());
const
framework
::
DDim
&
dz_dims
=
dz
->
dims
();
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
axis
=
(
axis
==
-
1
?
std
::
abs
(
x_dims
.
size
()
-
y_dims
.
size
())
:
axis
);
int
max_dim
=
std
::
max
(
x_dims
.
size
(),
y_dims
.
size
());
PADDLE_ENFORCE_GE
(
axis
,
0
,
platform
::
errors
::
InvalidArgument
(
...
...
@@ -120,66 +72,74 @@ class ElementwiseAddGradXPUKernel : public ElemwiseGradKernel<T> {
platform
::
errors
::
InvalidArgument
(
"Axis should be less than %d, but received axis is %d."
,
max_dim
,
axis
));
std
::
vector
<
int
>
x_dims_vec
(
max_dim
,
1
);
std
::
vector
<
int
>
y_dims_vec
(
max_dim
,
1
);
int
x_len
=
1
;
int
y_len
=
1
;
std
::
vector
<
int
>
z_dims_vec
(
max_dim
,
1
);
if
(
x_dims
.
size
()
==
max_dim
)
{
for
(
int
i
=
0
;
i
<
max_dim
;
i
++
)
{
x_dims_vec
[
i
]
=
x_dims
[
i
];
x_len
*=
x_dims_vec
[
i
];
}
}
else
{
for
(
int
i
=
0
;
i
<
x_dims
.
size
();
i
++
)
{
x_dims_vec
[
i
+
axis
]
=
x_dims
[
i
];
x_len
*=
x_dims_vec
[
i
];
}
}
if
(
y_dims
.
size
()
==
max_dim
)
{
for
(
int
i
=
0
;
i
<
max_dim
;
i
++
)
{
y_dims_vec
[
i
]
=
y_dims
[
i
];
y_len
*=
y_dims_vec
[
i
];
}
}
else
{
for
(
int
i
=
0
;
i
<
y_dims
.
size
();
i
++
)
{
y_dims_vec
[
i
+
axis
]
=
y_dims
[
i
];
y_len
*=
y_dims_vec
[
i
];
}
}
const
T
*
dz_data
=
dz
->
data
<
T
>
();
framework
::
Tensor
dx_local_tensor
;
framework
::
Tensor
dy_local_tensor
;
bool
need_wait
=
false
;
T
*
dx_data
=
nullptr
;
T
*
dy_data
=
nullptr
;
if
(
dx
)
{
dx_data
=
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
}
else
{
dx_data
=
dx_local_tensor
.
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
x_len
*
sizeof
(
T
));
need_wait
=
true
;
}
if
(
dy
)
{
dy_data
=
dy
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
}
else
{
dy_data
=
dy_local_tensor
.
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
y_len
*
sizeof
(
T
));
need_wait
=
true
;
for
(
int
i
=
0
;
i
<
max_dim
;
i
++
)
{
z_dims_vec
[
i
]
=
dz_dims
[
i
];
}
std
::
vector
<
int
>
rdims_for_x
;
std
::
vector
<
int
>
rdims_for_y
;
rdims_for_x
=
get_rdims
(
x_dims_vec
,
z_dims_vec
);
rdims_for_y
=
get_rdims
(
y_dims_vec
,
z_dims_vec
);
const
T
*
dz_data
=
dz
->
data
<
T
>
();
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
XPUDeviceContext
>();
int
ret
=
xpu
::
broadcast_add_grad
<
T
>
(
dev_ctx
.
x_context
(),
dz_data
,
dz_data
,
dz_data
,
dz_data
,
dy_data
,
dx_data
,
x_dims_vec
,
y_dims_vec
);
PADDLE_ENFORCE_EQ
(
ret
,
xpu
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel Elementwise occur error in XPUElementwise error code "
,
ret
,
XPUAPIErrorMsg
[
ret
]));
if
(
need_wait
&&
dev_ctx
.
x_context
()
->
xpu_stream
)
{
dev_ctx
.
Wait
();
if
(
dx
!=
nullptr
)
{
if
(
rdims_for_x
.
size
()
==
0
)
{
framework
::
TensorCopy
(
*
dz
,
ctx
.
GetPlace
(),
ctx
.
template
device_context
<
platform
::
DeviceContext
>(),
dx
);
}
else
{
T
*
dx_data
=
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int
ret
=
xpu
::
reduce_sum
<
XPUType
>
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
dz_data
),
reinterpret_cast
<
XPUType
*>
(
dx_data
),
z_dims_vec
,
rdims_for_x
);
PADDLE_ENFORCE_EQ
(
ret
,
xpu
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel reduce_sum occur error in "
"XPUElementwise error code "
,
ret
,
XPUAPIErrorMsg
[
ret
]));
}
}
if
(
dy
!=
nullptr
)
{
if
(
rdims_for_y
.
size
()
==
0
)
{
framework
::
TensorCopy
(
*
dz
,
ctx
.
GetPlace
(),
ctx
.
template
device_context
<
platform
::
DeviceContext
>(),
dy
);
}
else
{
T
*
dy_data
=
dy
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int
ret
=
xpu
::
reduce_sum
<
XPUType
>
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
dz_data
),
reinterpret_cast
<
XPUType
*>
(
dy_data
),
z_dims_vec
,
rdims_for_y
);
PADDLE_ENFORCE_EQ
(
ret
,
xpu
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel reduce_sum occur error in "
"XPUElementwise error code "
,
ret
,
XPUAPIErrorMsg
[
ret
]));
}
}
}
};
...
...
@@ -189,10 +149,9 @@ class ElementwiseAddGradXPUKernel : public ElemwiseGradKernel<T> {
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
elementwise_add
,
ops
::
ElementwiseAddXPUKernel
<
float
>
,
ops
::
ElementwiseAddXPUKernel
<
paddle
::
platform
::
float16
>
);
REGISTER_OP_XPU_KERNEL
(
elementwise_add
,
ops
::
ElementwiseAddXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
REGISTER_OP_XPU_KERNEL
(
elementwise_add_grad
,
ops
::
ElementwiseAddGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
elementwise_add_grad
,
ops
::
ElementwiseAddGradXPUKernel
<
float
>
,
ops
::
ElementwiseAddGradXPUKernel
<
paddle
::
platform
::
float16
>
);
#endif
paddle/fluid/operators/elementwise/elementwise_div_op_xpu.cc
浏览文件 @
ff96a7d5
...
...
@@ -19,30 +19,33 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
T
>
class
ElementwiseDivXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
XPUElementwise
<
T
>
(
ctx
,
xpu
::
div
<
T
>
);
XPUElementwise
<
T
,
XPUType
>
(
ctx
,
xpu
::
broadcast_div
<
XPUType
>
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
T
>
class
ElementwiseDivGradXPUKernel
:
public
ElemwiseGradKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
ElemwiseGradKernel
<
T
>::
Compute
(
ctx
);
XPUElementwiseGrad
<
T
>
(
ctx
,
xpu
::
div_grad
<
T
>
,
true
);
XPUElementwiseGrad
<
T
,
XPUType
>
(
ctx
,
xpu
::
broadcast_div_grad
<
XPUType
>
,
true
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
elementwise_div
,
ops
::
ElementwiseDivXPUKernel
<
float
>
,
ops
::
ElementwiseDivXPUKernel
<
paddle
::
platform
::
float16
>
);
REGISTER_OP_XPU_KERNEL
(
elementwise_div
,
ops
::
ElementwiseDivXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
REGISTER_OP_XPU_KERNEL
(
elementwise_div_grad
,
ops
::
ElementwiseDivGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
elementwise_div_grad
,
ops
::
ElementwiseDivGradXPUKernel
<
float
>
,
ops
::
ElementwiseDivGradXPUKernel
<
paddle
::
platform
::
float16
>
);
#endif
paddle/fluid/operators/elementwise/elementwise_floordiv_op_xpu.cc
浏览文件 @
ff96a7d5
...
...
@@ -21,17 +21,22 @@ namespace operators {
template
<
typename
DeviceContext
,
typename
T
>
class
ElementwiseFloordivXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
XPUElementwise
<
T
>
(
ctx
,
xpu
::
floordiv
<
T
>
);
XPUElementwise
<
T
,
XPUType
>
(
ctx
,
xpu
::
broadcast_floordiv
<
XPUType
>
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
elementwise_floordiv
,
ops
::
ElementwiseFloordivXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
REGISTER_OP_XPU_KERNEL
(
elementwise_floordiv
,
ops
::
ElementwiseFloordivXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
,
ops
::
ElementwiseFloordivXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
paddle
::
platform
::
float16
>
);
#endif
paddle/fluid/operators/elementwise/elementwise_max_op_xpu.cc
浏览文件 @
ff96a7d5
...
...
@@ -20,20 +20,24 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
T
>
class
ElementwiseMaxXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
XPUElementwise
<
T
>
(
ctx
,
xpu
::
max
<
T
>
);
XPUElementwise
<
T
,
XPUType
>
(
ctx
,
xpu
::
broadcast_max
<
XPUType
>
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
T
>
class
ElementwiseMaxGradXPUKernel
:
public
ElemwiseGradKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
ElemwiseGradKernel
<
T
>::
Compute
(
ctx
);
XPUElementwiseGrad
<
T
>
(
ctx
,
xpu
::
max_grad
<
T
>
,
true
);
XPUElementwiseGrad
<
T
,
XPUType
>
(
ctx
,
xpu
::
broadcast_max_grad
<
XPUType
>
,
true
);
}
};
...
...
@@ -41,10 +45,9 @@ class ElementwiseMaxGradXPUKernel : public ElemwiseGradKernel<T> {
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
elementwise_max
,
ops
::
ElementwiseMaxXPUKernel
<
float
>
,
ops
::
ElementwiseMaxXPUKernel
<
paddle
::
platform
::
float16
>
);
REGISTER_OP_XPU_KERNEL
(
elementwise_max
,
ops
::
ElementwiseMaxXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
REGISTER_OP_XPU_KERNEL
(
elementwise_max_grad
,
ops
::
ElementwiseMaxGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
elementwise_max_grad
,
ops
::
ElementwiseMaxGradXPUKernel
<
float
>
,
ops
::
ElementwiseMaxGradXPUKernel
<
paddle
::
platform
::
float16
>
);
#endif
paddle/fluid/operators/elementwise/elementwise_min_op_xpu.cc
浏览文件 @
ff96a7d5
...
...
@@ -20,20 +20,24 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
T
>
class
ElementwiseMinXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
XPUElementwise
<
T
>
(
ctx
,
xpu
::
min
<
T
>
);
XPUElementwise
<
T
,
XPUType
>
(
ctx
,
xpu
::
broadcast_min
<
XPUType
>
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
T
>
class
ElementwiseMinGradXPUKernel
:
public
ElemwiseGradKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
ElemwiseGradKernel
<
T
>::
Compute
(
ctx
);
XPUElementwiseGrad
<
T
>
(
ctx
,
xpu
::
min_grad
<
T
>
,
true
);
XPUElementwiseGrad
<
T
,
XPUType
>
(
ctx
,
xpu
::
broadcast_min_grad
<
XPUType
>
,
true
);
}
};
...
...
@@ -41,10 +45,9 @@ class ElementwiseMinGradXPUKernel : public ElemwiseGradKernel<T> {
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
elementwise_min
,
ops
::
ElementwiseMinXPUKernel
<
float
>
,
ops
::
ElementwiseMinXPUKernel
<
paddle
::
platform
::
float16
>
);
REGISTER_OP_XPU_KERNEL
(
elementwise_min
,
ops
::
ElementwiseMinXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
REGISTER_OP_XPU_KERNEL
(
elementwise_min_grad
,
ops
::
ElementwiseMinGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
elementwise_min_grad
,
ops
::
ElementwiseMinGradXPUKernel
<
float
>
,
ops
::
ElementwiseMinGradXPUKernel
<
paddle
::
platform
::
float16
>
);
#endif
paddle/fluid/operators/elementwise/elementwise_mul_op_xpu.cc
浏览文件 @
ff96a7d5
...
...
@@ -18,20 +18,25 @@ limitations under the License. */
#include "paddle/fluid/operators/elementwise/elementwise_xpu.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
T
>
class
ElementwiseMulXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
XPUElementwise
<
T
>
(
ctx
,
xpu
::
mul
<
T
>
);
XPUElementwise
<
T
,
XPUType
>
(
ctx
,
xpu
::
broadcast_mul
<
XPUType
>
);
}
};
// DEFINE_XPU_GRAD_KERNEL(Mul, mul, true);
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
T
>
class
ElementwiseMulGradXPUKernel
:
public
ElemwiseGradKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
ElemwiseGradKernel
<
T
>::
Compute
(
ctx
);
XPUElementwiseGrad
<
T
>
(
ctx
,
xpu
::
mul_grad
<
T
>
,
true
);
XPUElementwiseGrad
<
T
,
XPUType
>
(
ctx
,
xpu
::
broadcast_mul_grad
<
XPUType
>
,
true
);
}
};
...
...
@@ -39,11 +44,10 @@ class ElementwiseMulGradXPUKernel : public ElemwiseGradKernel<T> {
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
elementwise_mul
,
ops
::
ElementwiseMulXPUKernel
<
float
>
,
ops
::
ElementwiseMulXPUKernel
<
paddle
::
platform
::
float16
>
);
REGISTER_OP_XPU_KERNEL
(
elementwise_mul
,
ops
::
ElementwiseMulXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
REGISTER_OP_XPU_KERNEL
(
elementwise_mul_grad
,
ops
::
ElementwiseMulGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
elementwise_mul_grad
,
ops
::
ElementwiseMulGradXPUKernel
<
float
>
,
ops
::
ElementwiseMulGradXPUKernel
<
paddle
::
platform
::
float16
>
);
#endif
paddle/fluid/operators/elementwise/elementwise_pow_op_xpu.cc
浏览文件 @
ff96a7d5
...
...
@@ -23,9 +23,11 @@ namespace operators {
template
<
typename
DeviceContext
,
typename
T
>
class
ElementwisePowXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
XPUElementwise
<
T
>
(
ctx
,
xpu
::
pow
<
float
>
);
XPUElementwise
<
T
,
XPUType
>
(
ctx
,
xpu
::
broadcast_pow
<
XPUType
>
);
}
};
...
...
@@ -35,6 +37,8 @@ class ElementwisePowXPUKernel : public framework::OpKernel<T> {
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
elementwise_pow
,
ops
::
ElementwisePowXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
ops
::
ElementwisePowXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
,
ops
::
ElementwisePowXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
paddle
::
platform
::
float16
>
);
#endif
paddle/fluid/operators/elementwise/elementwise_sub_op_xpu.cc
浏览文件 @
ff96a7d5
...
...
@@ -21,20 +21,25 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
T
>
class
ElementwiseSubXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
XPUElementwise
<
T
>
(
ctx
,
xpu
::
sub
<
float
>
);
XPUElementwise
<
T
,
XPUType
>
(
ctx
,
xpu
::
broadcast_sub
<
XPUType
>
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
T
>
class
ElementwiseSubGradXPUKernel
:
public
ElemwiseGradKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
ElemwiseGradKernel
<
T
>::
Compute
(
ctx
);
XPUElementwiseGrad
<
T
>
(
ctx
,
xpu
::
sub_grad
<
float
>
,
false
);
XPUElementwiseGrad
<
T
,
XPUType
>
(
ctx
,
xpu
::
broadcast_sub_grad
<
XPUType
>
,
false
);
}
};
...
...
@@ -42,11 +47,10 @@ class ElementwiseSubGradXPUKernel : public ElemwiseGradKernel<T> {
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
elementwise_sub
,
ops
::
ElementwiseSubXPUKernel
<
float
>
,
ops
::
ElementwiseSubXPUKernel
<
paddle
::
platform
::
float16
>
);
REGISTER_OP_XPU_KERNEL
(
elementwise_sub
,
ops
::
ElementwiseSubXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
REGISTER_OP_XPU_KERNEL
(
elementwise_sub_grad
,
ops
::
ElementwiseSubGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
elementwise_sub_grad
,
ops
::
ElementwiseSubGradXPUKernel
<
float
>
,
ops
::
ElementwiseSubGradXPUKernel
<
paddle
::
platform
::
float16
>
);
#endif
paddle/fluid/operators/elementwise/elementwise_xpu.h
浏览文件 @
ff96a7d5
...
...
@@ -25,64 +25,12 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
static
std
::
pair
<
std
::
vector
<
int
>
,
std
::
vector
<
int
>>
XPUDimsToBroadcastVector
(
const
framework
::
DDim
&
x
,
const
framework
::
DDim
&
y
)
{
std
::
vector
<
int
>
x_v
;
std
::
vector
<
int
>
y_v
;
int
y_size
=
y
.
size
();
for
(
int
i
=
0
;
i
<
y_size
;
++
i
)
{
if
(
x
[
i
]
==
y
[
i
])
{
x_v
.
push_back
(
y
[
i
]);
y_v
.
push_back
(
y
[
i
]);
continue
;
}
x_v
.
push_back
(
1
);
x_v
.
push_back
(
x
[
i
]);
y_v
.
push_back
(
y
[
i
]
/
x
[
i
]);
y_v
.
push_back
(
x
[
i
]);
}
return
std
::
make_pair
(
x_v
,
y_v
);
}
static
std
::
pair
<
std
::
vector
<
int
>
,
std
::
vector
<
int
>>
XPUReducesAxisVector
(
const
framework
::
DDim
&
x
,
const
framework
::
DDim
&
y
)
{
std
::
vector
<
int
>
x_vector
;
std
::
vector
<
int
>
axis_v
;
PADDLE_ENFORCE_GT
(
x
.
size
(),
0
,
platform
::
errors
::
OutOfRange
(
"x size is less 1, x shape is "
,
x
.
to_str
()));
PADDLE_ENFORCE_GT
(
y
.
size
(),
0
,
platform
::
errors
::
OutOfRange
(
"y size is less 1, y shape is "
,
y
.
to_str
()));
int
y_nums
=
framework
::
product
(
y
);
x_vector
=
framework
::
vectorize
<
int
>
(
x
);
if
(
y_nums
==
1
)
{
for
(
int
i
=
0
;
i
<
x
.
size
();
++
i
)
{
axis_v
.
push_back
(
i
);
}
return
std
::
make_pair
(
x_vector
,
axis_v
);
}
int
yidx
=
0
;
for
(
size_t
i
=
0
;
i
<
x_vector
.
size
();
++
i
)
{
if
(
yidx
>=
y
.
size
()
||
y
[
yidx
]
==
1
)
{
axis_v
.
push_back
(
i
);
yidx
++
;
continue
;
}
if
(
x_vector
[
i
]
!=
y
[
yidx
])
{
axis_v
.
push_back
(
i
);
continue
;
}
yidx
++
;
}
return
std
::
make_pair
(
x_vector
,
axis_v
);
}
template
<
typename
T
>
template
<
typename
T
,
typename
XPUType
>
void
XPUElementwise
(
const
framework
::
ExecutionContext
&
ctx
,
std
::
function
<
int
(
xpu
::
Context
*
,
const
T
*
,
const
T
*
,
T
*
,
int
)
>
func
)
{
std
::
function
<
int
(
xpu
::
Context
*
,
const
XPUType
*
,
const
XPUType
*
,
XPUType
*
,
const
std
::
vector
<
int
>&
,
const
std
::
vector
<
int
>&
)
>
func
)
{
auto
x_var
=
ctx
.
InputVar
(
"X"
);
PADDLE_ENFORCE_NE
(
x_var
,
nullptr
,
platform
::
errors
::
InvalidArgument
(
"Cannot get input Variable X"
));
...
...
@@ -110,86 +58,59 @@ void XPUElementwise(
platform
::
errors
::
InvalidArgument
(
"Axis should be less than %d, but received axis is %d."
,
max_dim
,
axis
));
std
::
vector
<
int
>
x_dims_array
(
max_dim
);
std
::
vector
<
int
>
y_dims_array
(
max_dim
);
std
::
vector
<
int
>
out_dims_array
(
max_dim
);
GetBroadcastDimsArrays
(
x_dims
,
y_dims
,
x_dims_array
.
data
(),
y_dims_array
.
data
(),
out_dims_array
.
data
(),
max_dim
,
axis
);
framework
::
DDim
out_dim
=
framework
::
make_ddim
(
out_dims_array
);
std
::
vector
<
int
>
x_dims_vec
(
max_dim
,
1
);
std
::
vector
<
int
>
y_dims_vec
(
max_dim
,
1
);
if
(
x_dims
.
size
()
==
max_dim
)
{
for
(
int
i
=
0
;
i
<
max_dim
;
i
++
)
{
x_dims_vec
[
i
]
=
x_dims
[
i
];
}
}
else
{
for
(
int
i
=
0
;
i
<
x_dims
.
size
();
i
++
)
{
x_dims_vec
[
i
+
axis
]
=
x_dims
[
i
];
}
}
if
(
y_dims
.
size
()
==
max_dim
)
{
for
(
int
i
=
0
;
i
<
max_dim
;
i
++
)
{
y_dims_vec
[
i
]
=
y_dims
[
i
];
}
}
else
{
for
(
int
i
=
0
;
i
<
y_dims
.
size
();
i
++
)
{
y_dims_vec
[
i
+
axis
]
=
y_dims
[
i
];
}
}
const
T
*
x_data
=
x
.
data
<
T
>
();
const
T
*
y_data
=
y
->
data
<
T
>
();
T
*
z_data
=
z
->
data
<
T
>
();
bool
need_wait
=
false
;
framework
::
Tensor
x_broadcast_tensor
;
framework
::
Tensor
y_broadcast_tensor
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
XPUDeviceContext
>();
int
ret
=
xpu
::
SUCCESS
;
// begin broadcast now
if
(
x
.
numel
()
!=
z
->
numel
())
{
// broadcast x
std
::
pair
<
std
::
vector
<
int
>
,
std
::
vector
<
int
>>
bcast_v
=
XPUDimsToBroadcastVector
(
framework
::
make_ddim
(
x_dims_array
),
out_dim
);
ret
=
xpu
::
broadcast
<
T
>
(
dev_ctx
.
x_context
(),
x_data
,
x_broadcast_tensor
.
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
z
->
numel
()
*
sizeof
(
T
)),
bcast_v
.
first
,
bcast_v
.
second
);
PADDLE_ENFORCE_EQ
(
ret
,
xpu
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel broadcast occur error in XPUElementwise error code %d"
,
ret
));
need_wait
=
true
;
x_data
=
x_broadcast_tensor
.
data
<
T
>
();
}
int
ret
=
xpu
::
SUCCESS
;
if
(
y
->
numel
()
!=
z
->
numel
())
{
// broadcast y
std
::
vector
<
int
>
bcast_x_v
;
std
::
vector
<
int
>
bcast_y_v
;
std
::
pair
<
std
::
vector
<
int
>
,
std
::
vector
<
int
>>
bcast_v
=
XPUDimsToBroadcastVector
(
framework
::
make_ddim
(
y_dims_array
),
out_dim
);
ret
=
xpu
::
broadcast
<
T
>
(
dev_ctx
.
x_context
(),
y_data
,
y_broadcast_tensor
.
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
z
->
numel
()
*
sizeof
(
T
)),
bcast_v
.
first
,
bcast_v
.
second
);
PADDLE_ENFORCE_EQ
(
ret
,
xpu
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel broadcast occur error in XPUElementwise error code %d"
,
ret
));
need_wait
=
true
;
y_data
=
y_broadcast_tensor
.
data
<
T
>
();
}
int
len
=
z
->
numel
();
ret
=
func
(
dev_ctx
.
x_context
(),
x_data
,
y_data
,
z_data
,
len
);
ret
=
func
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
x_data
),
reinterpret_cast
<
const
XPUType
*>
(
y_data
),
reinterpret_cast
<
XPUType
*>
(
z_data
),
x_dims_vec
,
y_dims_vec
);
PADDLE_ENFORCE_EQ
(
ret
,
xpu
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel Elementwise occur error in XPUElementwise error code "
,
ret
));
if
(
need_wait
&&
dev_ctx
.
x_context
()
->
xpu_stream
)
{
dev_ctx
.
Wait
();
}
ret
,
XPUAPIErrorMsg
[
ret
]));
}
template
<
typename
T
>
void
XPUElementwiseGrad
(
const
framework
::
ExecutionContext
&
ctx
,
std
::
function
<
int
(
xpu
::
Context
*
,
const
T
*
,
const
T
*
,
const
T
*
,
const
T
*
,
T
*
,
T
*
,
int
len
)
>
func
,
bool
use_x_y_data
)
{
template
<
typename
T
,
typename
XPUType
>
void
XPUElementwiseGrad
(
const
framework
::
ExecutionContext
&
ctx
,
std
::
function
<
int
(
xpu
::
Context
*
,
const
XPUType
*
,
const
XPUType
*
,
const
XPUType
*
,
const
XPUType
*
,
XPUType
*
,
XPUType
*
,
const
std
::
vector
<
int
>&
,
const
std
::
vector
<
int
>&
)
>
func
,
bool
use_x_y_data
)
{
auto
*
x
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Y"
);
auto
*
dz
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
z
=
dz
;
auto
*
dx
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dy
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
z
=
dz
;
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
const
framework
::
DDim
&
x_dims
=
x
->
dims
();
const
framework
::
DDim
&
y_dims
=
y
->
dims
();
...
...
@@ -204,120 +125,55 @@ void XPUElementwiseGrad(const framework::ExecutionContext& ctx,
platform
::
errors
::
InvalidArgument
(
"Axis should be less than %d, but received axis is %d."
,
max_dim
,
axis
));
std
::
vector
<
int
>
x_dims_vec
(
max_dim
,
1
);
std
::
vector
<
int
>
y_dims_vec
(
max_dim
,
1
);
if
(
x_dims
.
size
()
==
max_dim
)
{
for
(
int
i
=
0
;
i
<
max_dim
;
i
++
)
{
x_dims_vec
[
i
]
=
x_dims
[
i
];
}
}
else
{
for
(
int
i
=
0
;
i
<
x_dims
.
size
();
i
++
)
{
x_dims_vec
[
i
+
axis
]
=
x_dims
[
i
];
}
}
if
(
y_dims
.
size
()
==
max_dim
)
{
for
(
int
i
=
0
;
i
<
max_dim
;
i
++
)
{
y_dims_vec
[
i
]
=
y_dims
[
i
];
}
}
else
{
for
(
int
i
=
0
;
i
<
y_dims
.
size
();
i
++
)
{
y_dims_vec
[
i
+
axis
]
=
y_dims
[
i
];
}
}
std
::
vector
<
int
>
x_dims_array
(
max_dim
);
std
::
vector
<
int
>
y_dims_array
(
max_dim
);
std
::
vector
<
int
>
out_dims_array
(
max_dim
);
GetBroadcastDimsArrays
(
x_dims
,
y_dims
,
x_dims_array
.
data
(),
y_dims_array
.
data
(),
out_dims_array
.
data
(),
max_dim
,
axis
);
framework
::
DDim
out_dim
=
framework
::
make_ddim
(
out_dims_array
);
int
len
=
framework
::
product
(
out_dim
);
framework
::
Tensor
x_broadcast_tensor
;
framework
::
Tensor
y_broadcast_tensor
;
framework
::
Tensor
dx_local_tensor
;
framework
::
Tensor
dy_local_tensor
;
bool
need_wait
=
false
;
const
T
*
x_data
=
use_x_y_data
?
x
->
data
<
T
>
()
:
z
->
data
<
T
>
();
const
T
*
y_data
=
use_x_y_data
?
y
->
data
<
T
>
()
:
z
->
data
<
T
>
();
const
T
*
z_data
=
z
->
data
<
T
>
();
const
T
*
dz_data
=
(
const
T
*
)
dz
->
data
<
T
>
();
bool
dx_need_reduce
=
(
dx
!=
nullptr
)
&&
(
dx
->
numel
()
!=
len
);
bool
dy_need_reduce
=
(
dy
!=
nullptr
)
&&
(
dy
->
numel
()
!=
len
);
T
*
dx_data
=
((
dx
==
nullptr
)
||
dx_need_reduce
)
?
(
dx_local_tensor
.
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
len
*
sizeof
(
T
)))
:
(
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()));
T
*
dy_data
=
((
dy
==
nullptr
)
||
dy_need_reduce
)
?
(
dy_local_tensor
.
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
len
*
sizeof
(
T
)))
:
(
dy
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()));
int
ret
=
xpu
::
SUCCESS
;
const
T
*
dz_data
=
dz
->
data
<
T
>
();
T
*
dx_data
=
nullptr
;
T
*
dy_data
=
nullptr
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
XPUDeviceContext
>();
if
(
use_x_y_data
&&
x
->
numel
()
!=
len
)
{
std
::
vector
<
int
>
bcast_x_v
;
std
::
vector
<
int
>
bcast_y_v
;
std
::
pair
<
std
::
vector
<
int
>
,
std
::
vector
<
int
>>
bcast_v
=
XPUDimsToBroadcastVector
(
framework
::
make_ddim
(
x_dims_array
),
out_dim
);
ret
=
xpu
::
broadcast
<
T
>
(
dev_ctx
.
x_context
(),
x_data
,
x_broadcast_tensor
.
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
len
*
sizeof
(
T
)),
bcast_v
.
first
,
bcast_v
.
second
);
PADDLE_ENFORCE_EQ
(
ret
,
xpu
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel broadcast error occur! %d"
,
ret
));
need_wait
=
true
;
x_data
=
x_broadcast_tensor
.
data
<
T
>
();
}
if
(
use_x_y_data
&&
y
->
numel
()
!=
len
)
{
// broadcast y
std
::
vector
<
int
>
bcast_x_v
;
std
::
vector
<
int
>
bcast_y_v
;
std
::
pair
<
std
::
vector
<
int
>
,
std
::
vector
<
int
>>
bcast_v
=
XPUDimsToBroadcastVector
(
framework
::
make_ddim
(
y_dims_array
),
out_dim
);
ret
=
xpu
::
broadcast
<
T
>
(
dev_ctx
.
x_context
(),
y_data
,
y_broadcast_tensor
.
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
len
*
sizeof
(
T
)),
bcast_v
.
first
,
bcast_v
.
second
);
PADDLE_ENFORCE_EQ
(
ret
,
xpu
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel broadcast error occur! %d"
,
ret
));
need_wait
=
true
;
y_data
=
y_broadcast_tensor
.
data
<
T
>
();
}
ret
=
func
(
dev_ctx
.
x_context
(),
x_data
,
y_data
,
z_data
,
dz_data
,
dx_data
,
dy_data
,
len
);
PADDLE_ENFORCE_EQ
(
ret
,
xpu
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel binary occur error in "
"XPUElementwiseGrad, error code %d"
,
ret
));
if
(
dx_need_reduce
)
{
const
framework
::
DDim
&
dx_dims
=
dx
->
dims
();
std
::
pair
<
std
::
vector
<
int
>
,
std
::
vector
<
int
>>
reduce_v
=
XPUReducesAxisVector
(
out_dim
,
dx_dims
);
ret
=
xpu
::
reduce_sum
<
T
>
(
dev_ctx
.
x_context
(),
dx_data
,
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
reduce_v
.
first
,
reduce_v
.
second
);
PADDLE_ENFORCE_EQ
(
ret
,
xpu
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel reduce_sum occur error in "
"XPUElementwiseGrad, error code %d"
,
ret
));
need_wait
=
true
;
if
(
dx
)
{
dx_data
=
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
}
if
(
dy_need_reduce
)
{
const
framework
::
DDim
&
dy_dims
=
dy
->
dims
();
std
::
pair
<
std
::
vector
<
int
>
,
std
::
vector
<
int
>>
reduce_v
=
XPUReducesAxisVector
(
out_dim
,
dy_dims
);
ret
=
xpu
::
reduce_sum
<
T
>
(
dev_ctx
.
x_context
(),
dy_data
,
dy
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
reduce_v
.
first
,
reduce_v
.
second
);
PADDLE_ENFORCE_EQ
(
ret
,
xpu
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel reduce_sum occur error in "
"XPUElementwiseGrad, error code %d"
,
ret
));
need_wait
=
true
;
if
(
dy
)
{
dy_data
=
dy
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
}
if
(
need_wait
&&
dev_ctx
.
x_context
()
->
xpu_stream
)
{
dev_ctx
.
Wait
();
}
int
ret
=
func
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
x_data
),
reinterpret_cast
<
const
XPUType
*>
(
y_data
),
reinterpret_cast
<
const
XPUType
*>
(
z_data
),
reinterpret_cast
<
const
XPUType
*>
(
dz_data
),
reinterpret_cast
<
XPUType
*>
(
dy_data
),
reinterpret_cast
<
XPUType
*>
(
dx_data
),
x_dims_vec
,
y_dims_vec
);
PADDLE_ENFORCE_EQ
(
ret
,
xpu
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel Elementwise occur error in XPUElementwise error code "
,
ret
,
XPUAPIErrorMsg
[
ret
]));
}
}
// namespace operators
...
...
paddle/fluid/platform/xpu/xpu2_op_list.h
浏览文件 @
ff96a7d5
...
...
@@ -31,6 +31,48 @@ XPUOpMap& get_kl2_ops() {
static
XPUOpMap
s_xpu2_kernels
{
{
"mul"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"elementwise_sub"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"elementwise_sub_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"elementwise_add"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"elementwise_add_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"elementwise_div"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"elementwise_div_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"elementwise_pow"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"elementwise_floordiv"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"elementwise_mul"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"elementwise_mul_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"elementwise_max"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"elementwise_max_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"elementwise_min"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"elementwise_min_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
// AddMore
};
...
...
python/paddle/fluid/tests/unittests/xpu/test_rmsprop_op_xpu.py
浏览文件 @
ff96a7d5
...
...
@@ -251,7 +251,10 @@ class TestRMSPropV2(XPUOpTest):
cost
=
fluid
.
layers
.
square_error_cost
(
input
=
y_predict
,
label
=
y
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
rms_optimizer
=
paddle
.
optimizer
.
RMSProp
(
learning_rate
=
0.1
)
print
(
avg_cost
.
shape
)
linear
=
paddle
.
nn
.
Linear
(
13
,
5
)
rms_optimizer
=
paddle
.
optimizer
.
RMSProp
(
learning_rate
=
0.1
,
parameters
=
linear
.
parameters
())
rms_optimizer
.
minimize
(
avg_cost
)
fetch_list
=
[
avg_cost
]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录