Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ff92b6ba
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ff92b6ba
编写于
8月 16, 2018
作者:
T
tensor-tang
提交者:
GitHub
8月 16, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #12531 from tensor-tang/refine/op/gru
Refine gru cpu forward
上级
d4d8f831
c588c64a
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
373 addition
and
87 deletion
+373
-87
paddle/fluid/operators/gru_op.cc
paddle/fluid/operators/gru_op.cc
+159
-3
paddle/fluid/operators/gru_op.cu.cc
paddle/fluid/operators/gru_op.cu.cc
+90
-0
paddle/fluid/operators/gru_op.h
paddle/fluid/operators/gru_op.h
+0
-84
paddle/fluid/operators/math/blas.h
paddle/fluid/operators/math/blas.h
+41
-0
paddle/fluid/operators/math/blas_impl.h
paddle/fluid/operators/math/blas_impl.h
+75
-0
paddle/fluid/platform/dynload/mklml.h
paddle/fluid/platform/dynload/mklml.h
+8
-0
未找到文件。
paddle/fluid/operators/gru_op.cc
浏览文件 @
ff92b6ba
...
...
@@ -14,6 +14,11 @@ limitations under the License. */
#include "paddle/fluid/operators/gru_op.h"
#include <string>
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/detail/gru_cpu_kernel.h"
#include "paddle/fluid/operators/math/detail/gru_kernel.h"
DECLARE_int32
(
paddle_num_threads
);
namespace
paddle
{
namespace
operators
{
...
...
@@ -211,6 +216,158 @@ class GRUGradOp : public framework::OperatorWithKernel {
}
};
template
<
typename
T
>
class
GRUCPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
BatchCompute
(
const
framework
::
ExecutionContext
&
context
)
const
{
using
DeviceContext
=
paddle
::
platform
::
CPUDeviceContext
;
auto
*
input
=
context
.
Input
<
LoDTensor
>
(
"Input"
);
auto
*
h0
=
context
.
Input
<
Tensor
>
(
"H0"
);
auto
*
weight
=
context
.
Input
<
Tensor
>
(
"Weight"
);
const
T
*
weight_data
=
weight
->
data
<
T
>
();
auto
*
bias
=
context
.
Input
<
Tensor
>
(
"Bias"
);
auto
*
batch_gate
=
context
.
Output
<
LoDTensor
>
(
"BatchGate"
);
batch_gate
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
*
batch_reset_hidden_prev
=
context
.
Output
<
LoDTensor
>
(
"BatchResetHiddenPrev"
);
batch_reset_hidden_prev
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
*
batch_hidden
=
context
.
Output
<
LoDTensor
>
(
"BatchHidden"
);
batch_hidden
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
*
hidden
=
context
.
Output
<
LoDTensor
>
(
"Hidden"
);
hidden
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
hidden_dims
=
hidden
->
dims
();
bool
is_reverse
=
context
.
Attr
<
bool
>
(
"is_reverse"
);
math
::
LoDTensor2BatchFunctor
<
DeviceContext
,
T
>
to_batch
;
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
to_batch
(
dev_ctx
,
*
input
,
batch_gate
,
true
,
is_reverse
);
if
(
bias
)
{
math
::
RowwiseAdd
<
DeviceContext
,
T
>
add_bias
;
add_bias
(
dev_ctx
,
*
batch_gate
,
*
bias
,
batch_gate
);
}
int
frame_size
=
hidden_dims
[
1
];
math
::
GRUMetaValue
<
T
>
gru_value
;
gru_value
.
gate_weight
=
const_cast
<
T
*>
(
weight_data
);
gru_value
.
state_weight
=
const_cast
<
T
*>
(
weight_data
+
2
*
frame_size
*
frame_size
);
Tensor
ordered_h0
;
framework
::
Vector
<
size_t
>
order
(
batch_gate
->
lod
()[
2
]);
if
(
h0
)
{
// Since the batch computing for GRU reorders the input sequences
// according to their length. The initialized cell state also needs
// to reorder.
ReorderInitState
<
DeviceContext
,
T
>
(
context
.
template
device_context
<
DeviceContext
>(),
*
h0
,
order
,
&
ordered_h0
,
true
);
gru_value
.
prev_out_value
=
ordered_h0
.
data
<
T
>
();
}
else
{
gru_value
.
prev_out_value
=
nullptr
;
}
auto
batch_starts
=
batch_gate
->
lod
()[
0
];
size_t
seq_len
=
batch_starts
.
size
()
-
1
;
auto
active_node
=
math
::
detail
::
GetActivationType
(
context
.
Attr
<
std
::
string
>
(
"activation"
));
auto
active_gate
=
math
::
detail
::
GetActivationType
(
context
.
Attr
<
std
::
string
>
(
"gate_activation"
));
#ifdef PADDLE_WITH_MKLML
// use MKL packed to speedup GEMM
if
(
FLAGS_paddle_num_threads
>=
4
)
{
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
dev_ctx
);
T
*
packed_gate
=
blas
.
GEMM_ALLOC
(
CblasBMatrix
,
1
/*height of C*/
,
frame_size
*
2
/*width of weight*/
,
frame_size
/*height of height*/
);
PADDLE_ENFORCE
(
packed_gate
);
blas
.
GEMM_PACK
(
CblasBMatrix
,
CblasNoTrans
,
1
/*cur bs?*/
,
frame_size
*
2
,
frame_size
,
T
(
1.0
),
gru_value
.
gate_weight
,
frame_size
*
2
,
packed_gate
);
T
*
packed_state
=
blas
.
GEMM_ALLOC
(
CblasBMatrix
,
1
/*height of C*/
,
frame_size
/*width of weight*/
,
frame_size
/*height of height*/
);
PADDLE_ENFORCE
(
packed_state
);
blas
.
GEMM_PACK
(
CblasBMatrix
,
CblasNoTrans
,
1
/*cur bs?*/
,
frame_size
,
frame_size
,
T
(
1.0
),
gru_value
.
state_weight
,
frame_size
,
packed_state
);
for
(
size_t
n
=
0
;
n
<
seq_len
;
n
++
)
{
int
bstart
=
static_cast
<
int
>
(
batch_starts
[
n
]);
int
bend
=
static_cast
<
int
>
(
batch_starts
[
n
+
1
]);
int
cur_batch_size
=
bend
-
bstart
;
Tensor
gate_t
=
batch_gate
->
Slice
(
bstart
,
bend
);
Tensor
reset_hidden_prev_t
=
batch_reset_hidden_prev
->
Slice
(
bstart
,
bend
);
Tensor
hidden_t
=
batch_hidden
->
Slice
(
bstart
,
bend
);
gru_value
.
output_value
=
hidden_t
.
data
<
T
>
();
gru_value
.
gate_value
=
gate_t
.
data
<
T
>
();
gru_value
.
reset_output_value
=
reset_hidden_prev_t
.
data
<
T
>
();
if
(
gru_value
.
prev_out_value
)
{
blas
.
GEMM_COMPUTE
(
CblasNoTrans
,
CblasPacked
,
cur_batch_size
,
frame_size
*
2
,
frame_size
,
gru_value
.
prev_out_value
,
frame_size
,
packed_gate
,
frame_size
*
2
,
T
(
1
),
gru_value
.
gate_value
,
frame_size
*
3
);
}
math
::
detail
::
forward_reset_output
(
math
::
detail
::
forward
::
gru_resetOutput
<
T
>
(),
gru_value
,
frame_size
,
cur_batch_size
,
active_gate
);
if
(
gru_value
.
prev_out_value
)
{
blas
.
GEMM_COMPUTE
(
CblasNoTrans
,
CblasPacked
,
cur_batch_size
,
frame_size
,
frame_size
,
gru_value
.
reset_output_value
,
frame_size
,
packed_state
,
frame_size
,
T
(
1
),
gru_value
.
gate_value
+
frame_size
*
2
,
frame_size
*
3
);
}
math
::
detail
::
forward_final_output
(
math
::
detail
::
forward
::
gru_finalOutput
<
T
>
(),
gru_value
,
frame_size
,
cur_batch_size
,
active_node
);
gru_value
.
prev_out_value
=
gru_value
.
output_value
;
}
blas
.
GEMM_FREE
(
packed_gate
);
blas
.
GEMM_FREE
(
packed_state
);
}
else
{
#endif
for
(
size_t
n
=
0
;
n
<
seq_len
;
n
++
)
{
int
bstart
=
static_cast
<
int
>
(
batch_starts
[
n
]);
int
bend
=
static_cast
<
int
>
(
batch_starts
[
n
+
1
]);
int
cur_batch_size
=
bend
-
bstart
;
Tensor
gate_t
=
batch_gate
->
Slice
(
bstart
,
bend
);
Tensor
reset_hidden_prev_t
=
batch_reset_hidden_prev
->
Slice
(
bstart
,
bend
);
Tensor
hidden_t
=
batch_hidden
->
Slice
(
bstart
,
bend
);
gru_value
.
output_value
=
hidden_t
.
data
<
T
>
();
gru_value
.
gate_value
=
gate_t
.
data
<
T
>
();
gru_value
.
reset_output_value
=
reset_hidden_prev_t
.
data
<
T
>
();
math
::
GRUUnitFunctor
<
DeviceContext
,
T
>::
compute
(
dev_ctx
,
gru_value
,
frame_size
,
cur_batch_size
,
active_node
,
active_gate
);
gru_value
.
prev_out_value
=
gru_value
.
output_value
;
}
#ifdef PADDLE_WITH_MKLML
}
#endif
math
::
Batch2LoDTensorFunctor
<
DeviceContext
,
T
>
to_seq
;
batch_hidden
->
set_lod
(
batch_gate
->
lod
());
to_seq
(
dev_ctx
,
*
batch_hidden
,
hidden
);
}
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
BatchCompute
(
context
);
}
};
}
// namespace operators
}
// namespace paddle
...
...
@@ -218,9 +375,8 @@ namespace ops = paddle::operators;
REGISTER_OPERATOR
(
gru
,
ops
::
GRUOp
,
ops
::
GRUOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OPERATOR
(
gru_grad
,
ops
::
GRUGradOp
);
REGISTER_OP_CPU_KERNEL
(
gru
,
ops
::
GRUKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
GRUKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
gru
,
ops
::
GRUCPUKernel
<
float
>
,
ops
::
GRUCPUKernel
<
double
>
);
REGISTER_OP_CPU_KERNEL
(
gru_grad
,
ops
::
GRUGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
GRUGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
paddle/fluid/operators/gru_op.cu.cc
浏览文件 @
ff92b6ba
...
...
@@ -14,6 +14,96 @@ limitations under the License. */
#include "paddle/fluid/operators/gru_op.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
>
class
GRUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
BatchCompute
(
const
framework
::
ExecutionContext
&
context
)
const
{
auto
*
input
=
context
.
Input
<
LoDTensor
>
(
"Input"
);
auto
*
h0
=
context
.
Input
<
Tensor
>
(
"H0"
);
auto
*
weight
=
context
.
Input
<
Tensor
>
(
"Weight"
);
const
T
*
weight_data
=
weight
->
data
<
T
>
();
auto
*
bias
=
context
.
Input
<
Tensor
>
(
"Bias"
);
auto
*
batch_gate
=
context
.
Output
<
LoDTensor
>
(
"BatchGate"
);
batch_gate
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
*
batch_reset_hidden_prev
=
context
.
Output
<
LoDTensor
>
(
"BatchResetHiddenPrev"
);
batch_reset_hidden_prev
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
*
batch_hidden
=
context
.
Output
<
LoDTensor
>
(
"BatchHidden"
);
batch_hidden
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
*
hidden
=
context
.
Output
<
LoDTensor
>
(
"Hidden"
);
hidden
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
hidden_dims
=
hidden
->
dims
();
bool
is_reverse
=
context
.
Attr
<
bool
>
(
"is_reverse"
);
math
::
LoDTensor2BatchFunctor
<
DeviceContext
,
T
>
to_batch
;
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
to_batch
(
dev_ctx
,
*
input
,
batch_gate
,
true
,
is_reverse
);
if
(
bias
)
{
math
::
RowwiseAdd
<
DeviceContext
,
T
>
add_bias
;
add_bias
(
dev_ctx
,
*
batch_gate
,
*
bias
,
batch_gate
);
}
int
frame_size
=
hidden_dims
[
1
];
math
::
GRUMetaValue
<
T
>
gru_value
;
gru_value
.
gate_weight
=
const_cast
<
T
*>
(
weight_data
);
gru_value
.
state_weight
=
const_cast
<
T
*>
(
weight_data
+
2
*
frame_size
*
frame_size
);
Tensor
ordered_h0
;
framework
::
Vector
<
size_t
>
order
(
batch_gate
->
lod
()[
2
]);
if
(
h0
)
{
// Since the batch computing for GRU reorders the input sequences
// according to their length. The initialized cell state also needs
// to reorder.
ReorderInitState
<
DeviceContext
,
T
>
(
context
.
template
device_context
<
DeviceContext
>(),
*
h0
,
order
,
&
ordered_h0
,
true
);
gru_value
.
prev_out_value
=
ordered_h0
.
data
<
T
>
();
}
else
{
gru_value
.
prev_out_value
=
nullptr
;
}
auto
batch_starts
=
batch_gate
->
lod
()[
0
];
size_t
num_batch
=
batch_starts
.
size
()
-
1
;
auto
active_node
=
math
::
detail
::
GetActivationType
(
context
.
Attr
<
std
::
string
>
(
"activation"
));
auto
active_gate
=
math
::
detail
::
GetActivationType
(
context
.
Attr
<
std
::
string
>
(
"gate_activation"
));
for
(
size_t
n
=
0
;
n
<
num_batch
;
n
++
)
{
int
bstart
=
static_cast
<
int
>
(
batch_starts
[
n
]);
int
bend
=
static_cast
<
int
>
(
batch_starts
[
n
+
1
]);
int
cur_batch_size
=
bend
-
bstart
;
Tensor
gate_t
=
batch_gate
->
Slice
(
bstart
,
bend
);
Tensor
reset_hidden_prev_t
=
batch_reset_hidden_prev
->
Slice
(
bstart
,
bend
);
Tensor
hidden_t
=
batch_hidden
->
Slice
(
bstart
,
bend
);
gru_value
.
output_value
=
hidden_t
.
data
<
T
>
();
gru_value
.
gate_value
=
gate_t
.
data
<
T
>
();
gru_value
.
reset_output_value
=
reset_hidden_prev_t
.
data
<
T
>
();
math
::
GRUUnitFunctor
<
DeviceContext
,
T
>::
compute
(
dev_ctx
,
gru_value
,
frame_size
,
cur_batch_size
,
active_node
,
active_gate
);
gru_value
.
prev_out_value
=
gru_value
.
output_value
;
}
math
::
Batch2LoDTensorFunctor
<
DeviceContext
,
T
>
to_seq
;
batch_hidden
->
set_lod
(
batch_gate
->
lod
());
to_seq
(
dev_ctx
,
*
batch_hidden
,
hidden
);
}
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
BatchCompute
(
context
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
gru
,
ops
::
GRUKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
...
...
paddle/fluid/operators/gru_op.h
浏览文件 @
ff92b6ba
...
...
@@ -37,90 +37,6 @@ inline void ReorderInitState(const DeviceContext& ctx,
row_shuffle
(
ctx
,
src
,
index_lod
,
dst
,
indexed_src
);
}
template
<
typename
DeviceContext
,
typename
T
>
class
GRUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
BatchCompute
(
const
framework
::
ExecutionContext
&
context
)
const
{
auto
*
input
=
context
.
Input
<
LoDTensor
>
(
"Input"
);
auto
*
h0
=
context
.
Input
<
Tensor
>
(
"H0"
);
auto
*
weight
=
context
.
Input
<
Tensor
>
(
"Weight"
);
const
T
*
weight_data
=
weight
->
data
<
T
>
();
auto
*
bias
=
context
.
Input
<
Tensor
>
(
"Bias"
);
auto
*
batch_gate
=
context
.
Output
<
LoDTensor
>
(
"BatchGate"
);
batch_gate
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
*
batch_reset_hidden_prev
=
context
.
Output
<
LoDTensor
>
(
"BatchResetHiddenPrev"
);
batch_reset_hidden_prev
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
*
batch_hidden
=
context
.
Output
<
LoDTensor
>
(
"BatchHidden"
);
batch_hidden
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
*
hidden
=
context
.
Output
<
LoDTensor
>
(
"Hidden"
);
hidden
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
hidden_dims
=
hidden
->
dims
();
bool
is_reverse
=
context
.
Attr
<
bool
>
(
"is_reverse"
);
math
::
LoDTensor2BatchFunctor
<
DeviceContext
,
T
>
to_batch
;
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
to_batch
(
dev_ctx
,
*
input
,
batch_gate
,
true
,
is_reverse
);
if
(
bias
)
{
math
::
RowwiseAdd
<
DeviceContext
,
T
>
add_bias
;
add_bias
(
dev_ctx
,
*
batch_gate
,
*
bias
,
batch_gate
);
}
int
frame_size
=
hidden_dims
[
1
];
math
::
GRUMetaValue
<
T
>
gru_value
;
gru_value
.
gate_weight
=
const_cast
<
T
*>
(
weight_data
);
gru_value
.
state_weight
=
const_cast
<
T
*>
(
weight_data
+
2
*
frame_size
*
frame_size
);
Tensor
ordered_h0
;
framework
::
Vector
<
size_t
>
order
(
batch_gate
->
lod
()[
2
]);
if
(
h0
)
{
// Since the batch computing for GRU reorders the input sequences
// according to their length. The initialized cell state also needs
// to reorder.
ReorderInitState
<
DeviceContext
,
T
>
(
context
.
template
device_context
<
DeviceContext
>(),
*
h0
,
order
,
&
ordered_h0
,
true
);
gru_value
.
prev_out_value
=
ordered_h0
.
data
<
T
>
();
}
else
{
gru_value
.
prev_out_value
=
nullptr
;
}
auto
batch_starts
=
batch_gate
->
lod
()[
0
];
size_t
num_batch
=
batch_starts
.
size
()
-
1
;
auto
active_node
=
math
::
detail
::
GetActivationType
(
context
.
Attr
<
std
::
string
>
(
"activation"
));
auto
active_gate
=
math
::
detail
::
GetActivationType
(
context
.
Attr
<
std
::
string
>
(
"gate_activation"
));
for
(
size_t
n
=
0
;
n
<
num_batch
;
n
++
)
{
int
bstart
=
static_cast
<
int
>
(
batch_starts
[
n
]);
int
bend
=
static_cast
<
int
>
(
batch_starts
[
n
+
1
]);
int
cur_batch_size
=
bend
-
bstart
;
Tensor
gate_t
=
batch_gate
->
Slice
(
bstart
,
bend
);
Tensor
reset_hidden_prev_t
=
batch_reset_hidden_prev
->
Slice
(
bstart
,
bend
);
Tensor
hidden_t
=
batch_hidden
->
Slice
(
bstart
,
bend
);
gru_value
.
output_value
=
hidden_t
.
data
<
T
>
();
gru_value
.
gate_value
=
gate_t
.
data
<
T
>
();
gru_value
.
reset_output_value
=
reset_hidden_prev_t
.
data
<
T
>
();
math
::
GRUUnitFunctor
<
DeviceContext
,
T
>::
compute
(
dev_ctx
,
gru_value
,
frame_size
,
cur_batch_size
,
active_node
,
active_gate
);
gru_value
.
prev_out_value
=
gru_value
.
output_value
;
}
math
::
Batch2LoDTensorFunctor
<
DeviceContext
,
T
>
to_seq
;
batch_hidden
->
set_lod
(
batch_gate
->
lod
());
to_seq
(
dev_ctx
,
*
batch_hidden
,
hidden
);
}
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
BatchCompute
(
context
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
GRUGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
...
...
paddle/fluid/operators/math/blas.h
浏览文件 @
ff92b6ba
...
...
@@ -90,6 +90,25 @@ class Blas {
void
GEMM
(
bool
transA
,
bool
transB
,
int
M
,
int
N
,
int
K
,
T
alpha
,
const
T
*
A
,
int
lda
,
const
T
*
B
,
int
ldb
,
T
beta
,
T
*
C
,
int
ldc
)
const
;
#ifdef PADDLE_WITH_MKLML
template
<
typename
T
>
T
*
GEMM_ALLOC
(
const
CBLAS_IDENTIFIER
id
,
const
int
M
,
const
int
N
,
const
int
K
)
const
;
template
<
typename
T
>
void
GEMM_PACK
(
const
CBLAS_IDENTIFIER
id
,
const
CBLAS_TRANSPOSE
trans
,
int
M
,
int
N
,
int
K
,
const
T
alpha
,
const
T
*
src
,
const
int
ld
,
T
*
dst
)
const
;
template
<
typename
T
>
void
GEMM_COMPUTE
(
int
transA
,
int
transB
,
int
M
,
int
N
,
int
K
,
const
T
*
A
,
const
int
lda
,
const
T
*
B
,
const
int
ldb
,
T
beta
,
T
*
C
,
const
int
ldc
)
const
;
template
<
typename
T
>
void
GEMM_FREE
(
T
*
data
)
const
;
#endif
template
<
typename
T
>
void
MatMul
(
const
framework
::
Tensor
&
mat_a
,
bool
trans_a
,
const
framework
::
Tensor
&
mat_b
,
bool
trans_b
,
T
alpha
,
...
...
@@ -146,6 +165,28 @@ class BlasT : private Blas<DeviceContext> {
Base
()
->
template
GEMM
<
T
>(
args
...);
}
#ifdef PADDLE_WITH_MKLML
template
<
typename
...
ARGS
>
T
*
GEMM_ALLOC
(
ARGS
...
args
)
const
{
return
Base
()
->
template
GEMM_ALLOC
<
T
>(
args
...);
}
template
<
typename
...
ARGS
>
void
GEMM_PACK
(
ARGS
...
args
)
const
{
Base
()
->
template
GEMM_PACK
<
T
>(
args
...);
}
template
<
typename
...
ARGS
>
void
GEMM_COMPUTE
(
ARGS
...
args
)
const
{
Base
()
->
template
GEMM_COMPUTE
<
T
>(
args
...);
}
template
<
typename
...
ARGS
>
void
GEMM_FREE
(
ARGS
...
args
)
const
{
Base
()
->
template
GEMM_FREE
<
T
>(
args
...);
}
#endif
template
<
typename
...
ARGS
>
void
MatMul
(
ARGS
...
args
)
const
{
Base
()
->
template
MatMul
<
T
>(
args
...);
...
...
paddle/fluid/operators/math/blas_impl.h
浏览文件 @
ff92b6ba
...
...
@@ -31,6 +31,26 @@ struct CBlas<float> {
platform
::
dynload
::
cblas_sgemm
(
args
...);
}
template
<
typename
...
ARGS
>
static
float
*
GEMM_ALLOC
(
ARGS
...
args
)
{
return
platform
::
dynload
::
cblas_sgemm_alloc
(
args
...);
}
template
<
typename
...
ARGS
>
static
void
GEMM_PACK
(
ARGS
...
args
)
{
platform
::
dynload
::
cblas_sgemm_pack
(
args
...);
}
template
<
typename
...
ARGS
>
static
void
GEMM_COMPUTE
(
ARGS
...
args
)
{
platform
::
dynload
::
cblas_sgemm_compute
(
args
...);
}
template
<
typename
...
ARGS
>
static
void
GEMM_FREE
(
ARGS
...
args
)
{
platform
::
dynload
::
cblas_sgemm_free
(
args
...);
}
#ifdef PADDLE_WITH_LIBXSMM
template
<
typename
...
ARGS
>
static
void
SMM_GEMM
(
ARGS
...
args
)
{
...
...
@@ -71,6 +91,26 @@ struct CBlas<double> {
platform
::
dynload
::
cblas_dgemm
(
args
...);
}
template
<
typename
...
ARGS
>
static
double
*
GEMM_ALLOC
(
ARGS
...
args
)
{
return
platform
::
dynload
::
cblas_dgemm_alloc
(
args
...);
}
template
<
typename
...
ARGS
>
static
void
GEMM_PACK
(
ARGS
...
args
)
{
platform
::
dynload
::
cblas_dgemm_pack
(
args
...);
}
template
<
typename
...
ARGS
>
static
void
GEMM_COMPUTE
(
ARGS
...
args
)
{
platform
::
dynload
::
cblas_dgemm_compute
(
args
...);
}
template
<
typename
...
ARGS
>
static
void
GEMM_FREE
(
ARGS
...
args
)
{
platform
::
dynload
::
cblas_dgemm_free
(
args
...);
}
#ifdef PADDLE_WITH_LIBXSMM
template
<
typename
...
ARGS
>
static
void
SMM_GEMM
(
ARGS
...
args
)
{
...
...
@@ -224,6 +264,41 @@ inline void GEMM_WARP(CBLAS_ORDER order, CBLAS_TRANSPOSE transA,
beta
,
C
,
ldc
);
}
#ifdef PADDLE_WITH_MKLML
template
<
>
template
<
typename
T
>
T
*
Blas
<
platform
::
CPUDeviceContext
>::
GEMM_ALLOC
(
const
CBLAS_IDENTIFIER
id
,
const
int
M
,
const
int
N
,
const
int
K
)
const
{
return
CBlas
<
T
>::
GEMM_ALLOC
(
id
,
M
,
N
,
K
);
}
template
<
>
template
<
typename
T
>
void
Blas
<
platform
::
CPUDeviceContext
>::
GEMM_PACK
(
const
CBLAS_IDENTIFIER
id
,
const
CBLAS_TRANSPOSE
trans
,
int
M
,
int
N
,
int
K
,
const
T
alpha
,
const
T
*
src
,
const
int
ld
,
T
*
dst
)
const
{
CBlas
<
T
>::
GEMM_PACK
(
CblasRowMajor
,
id
,
trans
,
M
,
N
,
K
,
alpha
,
src
,
ld
,
dst
);
}
template
<
>
template
<
typename
T
>
void
Blas
<
platform
::
CPUDeviceContext
>::
GEMM_COMPUTE
(
int
transA
,
int
transB
,
int
M
,
int
N
,
int
K
,
const
T
*
A
,
const
int
lda
,
const
T
*
B
,
const
int
ldb
,
T
beta
,
T
*
C
,
const
int
ldc
)
const
{
CBlas
<
T
>::
GEMM_COMPUTE
(
CblasRowMajor
,
transA
,
transB
,
M
,
N
,
K
,
A
,
lda
,
B
,
ldb
,
beta
,
C
,
ldc
);
}
template
<
>
template
<
typename
T
>
void
Blas
<
platform
::
CPUDeviceContext
>::
GEMM_FREE
(
T
*
data
)
const
{
CBlas
<
T
>::
GEMM_FREE
(
data
);
}
#endif
template
<
>
template
<
typename
T
>
void
Blas
<
platform
::
CPUDeviceContext
>::
GEMM
(
CBLAS_TRANSPOSE
transA
,
...
...
paddle/fluid/platform/dynload/mklml.h
浏览文件 @
ff92b6ba
...
...
@@ -60,6 +60,14 @@ extern void* mklml_dso_handle;
__macro(cblas_dgemm_batch); \
__macro(vsAdd); \
__macro(vdAdd); \
__macro(cblas_sgemm_alloc); \
__macro(cblas_sgemm_pack); \
__macro(cblas_sgemm_compute); \
__macro(cblas_sgemm_free); \
__macro(cblas_dgemm_alloc); \
__macro(cblas_dgemm_pack); \
__macro(cblas_dgemm_compute); \
__macro(cblas_dgemm_free); \
__macro(MKL_Set_Num_Threads)
MKLML_ROUTINE_EACH
(
DECLARE_DYNAMIC_LOAD_MKLML_WRAP
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录