未验证 提交 ff3ddbb5 编写于 作者: W Wilber 提交者: GitHub

add skip_layernorm pass. test=develop (#22895)

* add skip_layernorm pass. test=develop
上级 f154d586
...@@ -75,6 +75,7 @@ pass_library(shuffle_channel_detect_pass inference) ...@@ -75,6 +75,7 @@ pass_library(shuffle_channel_detect_pass inference)
pass_library(delete_quant_dequant_op_pass inference) pass_library(delete_quant_dequant_op_pass inference)
pass_library(simplify_with_basic_ops_pass base) pass_library(simplify_with_basic_ops_pass base)
pass_library(fc_elementwise_layernorm_fuse_pass base) pass_library(fc_elementwise_layernorm_fuse_pass base)
pass_library(skip_layernorm_fuse_pass base)
pass_library(multihead_matmul_fuse_pass inference) pass_library(multihead_matmul_fuse_pass inference)
if(WITH_GPU) if(WITH_GPU)
pass_library(cudnn_placement_pass base DEPS placement_pass_base) pass_library(cudnn_placement_pass base DEPS placement_pass_base)
...@@ -125,6 +126,7 @@ cc_test(test_repeated_fc_relu_fuse_pass SRCS repeated_fc_relu_fuse_pass_tester.c ...@@ -125,6 +126,7 @@ cc_test(test_repeated_fc_relu_fuse_pass SRCS repeated_fc_relu_fuse_pass_tester.c
cc_test(test_is_test_pass SRCS is_test_pass_tester.cc DEPS is_test_pass) cc_test(test_is_test_pass SRCS is_test_pass_tester.cc DEPS is_test_pass)
cc_test(test_simplify_with_basic_ops_pass SRCS simplify_with_basic_ops_pass_tester.cc DEPS simplify_with_basic_ops_pass) cc_test(test_simplify_with_basic_ops_pass SRCS simplify_with_basic_ops_pass_tester.cc DEPS simplify_with_basic_ops_pass)
cc_test(test_fc_elementwise_layernorm_fuse_pass SRCS fc_elementwise_layernorm_fuse_pass_tester.cc DEPS fc_elementwise_layernorm_fuse_pass) cc_test(test_fc_elementwise_layernorm_fuse_pass SRCS fc_elementwise_layernorm_fuse_pass_tester.cc DEPS fc_elementwise_layernorm_fuse_pass)
cc_test(test_skip_layernorm_fuse_pass SRCS skip_layernorm_fuse_pass_tester.cc DEPS skip_layernorm_fuse_pass)
cc_test(test_multihead_matmul_fuse_pass SRCS multihead_matmul_fuse_pass_tester.cc DEPS multihead_matmul_fuse_pass) cc_test(test_multihead_matmul_fuse_pass SRCS multihead_matmul_fuse_pass_tester.cc DEPS multihead_matmul_fuse_pass)
cc_test(test_conv_bn_fuse_pass SRCS conv_bn_fuse_pass_tester.cc DEPS conv_bn_fuse_pass) cc_test(test_conv_bn_fuse_pass SRCS conv_bn_fuse_pass_tester.cc DEPS conv_bn_fuse_pass)
if(WITH_GPU) if(WITH_GPU)
......
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/ir/skip_layernorm_fuse_pass.h"
#include <string>
#include <unordered_set>
#include <vector>
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
namespace paddle {
namespace framework {
namespace ir {
namespace patterns {
struct SkipLayerNorm : public PatternBase {
SkipLayerNorm(PDPattern *pattern, const std::string &name_scope)
: PatternBase(pattern, name_scope, "skip_layernorm") {}
PDNode *operator()(PDNode *x, PDNode *y);
// declare operator node's name
PATTERN_DECL_NODE(fused_skipe_layernorm);
PATTERN_DECL_NODE(elementwise);
PATTERN_DECL_NODE(layer_norm);
// declare variable node's name
PATTERN_DECL_NODE(
elementwise_out); // (elementwise_input_x,elementwise_input_y) ->
// elementwise_out
PATTERN_DECL_NODE(layer_norm_bias);
PATTERN_DECL_NODE(layer_norm_scale);
PATTERN_DECL_NODE(layer_norm_out);
PATTERN_DECL_NODE(layer_norm_mean);
PATTERN_DECL_NODE(layer_norm_variance);
};
PDNode *SkipLayerNorm::operator()(PDNode *x, PDNode *y) {
// Create nodes for elementwise add op.
x->assert_is_op_input("elementwise_add", "X");
y->assert_is_op_input("elementwise_add", "Y");
auto *elementwise =
pattern->NewNode(elementwise_repr())->assert_is_op("elementwise_add");
auto *elementwise_out_var = pattern->NewNode(elementwise_out_repr())
->AsOutput()
->assert_is_op_output("elementwise_add");
// Add links for elementwise_add op.
elementwise->LinksFrom({x, y}).LinksTo({elementwise_out_var});
// Create nodes for layer_norm op.
elementwise_out_var->AsIntermediate()->assert_is_op_input("layer_norm");
auto *layer_norm =
pattern->NewNode(layer_norm_repr())->assert_is_op("layer_norm");
auto *layer_norm_bias_var = pattern->NewNode(layer_norm_bias_repr())
->AsInput()
->assert_is_persistable_var()
->assert_is_op_input("layer_norm", "Bias");
auto *layer_norm_scale_var = pattern->NewNode(layer_norm_scale_repr())
->AsInput()
->assert_is_persistable_var()
->assert_is_op_input("layer_norm", "Scale");
auto *layer_norm_out_var = pattern->NewNode(layer_norm_out_repr())
->AsOutput()
->assert_is_op_output("layer_norm", "Y");
auto *layer_norm_mean_var = pattern->NewNode(layer_norm_mean_repr())
->AsOutput()
->assert_is_op_output("layer_norm", "Mean");
auto *layer_norm_variance_var =
pattern->NewNode(layer_norm_variance_repr())
->AsOutput()
->assert_is_op_output("layer_norm", "Variance");
// Add links for layer_norm op.
layer_norm
->LinksFrom(
{elementwise_out_var, layer_norm_bias_var, layer_norm_scale_var})
.LinksTo(
{layer_norm_out_var, layer_norm_mean_var, layer_norm_variance_var});
return layer_norm_out_var;
}
} // namespace patterns
void SkipLayerNormFusePass::ApplyImpl(ir::Graph *graph) const {
PADDLE_ENFORCE_NOT_NULL(
graph, platform::errors::PreconditionNotMet("graph should not be null."));
FusePassBase::Init("skip_layernorm_fuse", graph);
int found_subgraph_count = 0;
GraphPatternDetector gpd;
auto *x = gpd.mutable_pattern()
->NewNode("skip_layernorm_fuse/x")
->AsInput()
->assert_is_op_input("elementwise_add", "X")
->assert_var_not_persistable();
auto *y = gpd.mutable_pattern()
->NewNode("skip_layernorm_fuse/y")
->AsInput()
->assert_is_op_input("elementwise_add", "Y")
->assert_var_not_persistable();
patterns::SkipLayerNorm fused_pattern(gpd.mutable_pattern(),
"skip_layernorm_fuse");
fused_pattern(x, y);
auto handler = [&](const GraphPatternDetector::subgraph_t &subgraph,
Graph *graph) {
if (subgraph.count(x) <= 0 || subgraph.count(y) <= 0) {
LOG(WARNING) << "The subgraph is empty.";
return;
}
VLOG(4) << "handle SkipLayerNorm fuse";
GET_IR_NODE_FROM_SUBGRAPH(elementwise, elementwise, fused_pattern);
GET_IR_NODE_FROM_SUBGRAPH(elementwise_out, elementwise_out, fused_pattern);
GET_IR_NODE_FROM_SUBGRAPH(layer_norm, layer_norm, fused_pattern);
GET_IR_NODE_FROM_SUBGRAPH(layer_norm_bias, layer_norm_bias, fused_pattern);
GET_IR_NODE_FROM_SUBGRAPH(layer_norm_scale, layer_norm_scale,
fused_pattern);
GET_IR_NODE_FROM_SUBGRAPH(layer_norm_out, layer_norm_out, fused_pattern);
GET_IR_NODE_FROM_SUBGRAPH(layer_norm_mean, layer_norm_mean, fused_pattern);
GET_IR_NODE_FROM_SUBGRAPH(layer_norm_variance, layer_norm_variance,
fused_pattern);
std::unordered_set<const Node *> del_node_set;
// Create an SkipLayerNorm op node
OpDesc new_desc;
new_desc.SetType("skip_layernorm");
// inputs
new_desc.SetInput("X", {subgraph.at(x)->Name()});
new_desc.SetInput("Y", {subgraph.at(y)->Name()});
new_desc.SetInput("Scale", {layer_norm_scale->Name()});
new_desc.SetInput("Bias", {layer_norm_bias->Name()});
// outputs
new_desc.SetOutput("Out", {layer_norm_out->Name()});
// attrs
new_desc.SetAttr("epsilon", layer_norm->Op()->GetAttr("epsilon"));
new_desc.SetAttr("begin_norm_axis",
layer_norm->Op()->GetAttr("begin_norm_axis"));
auto fused_node = graph->CreateOpNode(&new_desc); // OpDesc will be copied.
del_node_set.insert(elementwise);
del_node_set.insert(layer_norm);
del_node_set.insert(elementwise_out);
del_node_set.insert(layer_norm_mean);
del_node_set.insert(layer_norm_variance);
GraphSafeRemoveNodes(graph, del_node_set);
IR_NODE_LINK_TO(subgraph.at(x), fused_node);
IR_NODE_LINK_TO(subgraph.at(y), fused_node);
IR_NODE_LINK_TO(layer_norm_scale, fused_node);
IR_NODE_LINK_TO(layer_norm_bias, fused_node);
IR_NODE_LINK_TO(fused_node, layer_norm_out);
found_subgraph_count++;
};
gpd(graph, handler);
AddStatis(found_subgraph_count);
}
} // namespace ir
} // namespace framework
} // namespace paddle
REGISTER_PASS(skip_layernorm_fuse_pass,
paddle::framework::ir::SkipLayerNormFusePass);
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
namespace paddle {
namespace framework {
namespace ir {
// | | | |
// other_op1 other_op2 other_op1 other_op2
// | | fuse \ /
// |------elementwise_add -> skip_layernorm
// | |
// layer_norm other_op3
// | |
// other_op3
// |
class SkipLayerNormFusePass : public FusePassBase {
public:
virtual ~SkipLayerNormFusePass() {}
protected:
void ApplyImpl(ir::Graph* graph) const override;
};
} // namespace ir
} // namespace framework
} // namespace paddle
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/ir/skip_layernorm_fuse_pass.h"
#include <gtest/gtest.h>
#include "paddle/fluid/framework/ir/pass_tester_helper.h"
namespace paddle {
namespace framework {
namespace ir {
TEST(SkipLayerNormFusePass, basic) {
// inputs operator output
// --------------------------------------------------------------------
// (x, y) elementwise_add -> elementwise_out
// (elementwise_out, scale, bias) layer_norm -> layer_norm_out...
Layers layers;
auto* x = layers.data("x", {128, 768});
auto* y = layers.data("y", {128, 768});
auto* elementwise_out = layers.elementwise_add(x, y);
auto* scale = layers.data("scale", {768}, true);
auto* bias = layers.data("bias", {768}, true);
layers.layer_norm(elementwise_out, scale, bias);
std::unique_ptr<ir::Graph> graph(new ir::Graph(layers.main_program()));
auto pass = PassRegistry::Instance().Get("skip_layernorm_fuse_pass");
int num_nodes_before = graph->Nodes().size();
VLOG(3) << DebugString(graph);
graph.reset(pass->Apply(graph.release()));
int num_nodes_after = graph->Nodes().size();
int num_fused_nodes_after = GetNumOpNodes(graph, "skip_layernorm");
VLOG(3) << DebugString(graph);
PADDLE_ENFORCE_EQ(num_nodes_before, num_nodes_after + 4,
platform::errors::PreconditionNotMet(
"The number of nodes before and after the fuse does "
"not meet expectations"));
PADDLE_ENFORCE_EQ(
num_fused_nodes_after, 1,
platform::errors::PreconditionNotMet(
"The number of fusion nodes does not meet expectations after fuse"));
}
} // namespace ir
} // namespace framework
} // namespace paddle
USE_PASS(skip_layernorm_fuse_pass);
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from pass_test import PassTest
import paddle.fluid as fluid
import paddle.fluid.core as core
class SkipLayerNormFusePassTest(PassTest):
def setUp(self):
with fluid.program_guard(self.main_program, self.startup_program):
x = fluid.data(
name="x", shape=[128, 768], dtype="float32", lod_level=0)
y = fluid.data(
name="y", shape=[128, 768], dtype="float32", lod_level=0)
elementwise_out = fluid.layers.elementwise_add(x=x, y=y)
out = fluid.layers.layer_norm(input=elementwise_out)
self.fetch_list = [out]
self.pass_names = "skip_layernorm_fuse_pass"
self.fused_op_type = "skip_layernorm"
self.num_fused_ops = 1
def test_check_program(self):
use_gpu_set = [False]
if core.is_compiled_with_cuda():
use_gpu_set.append(True)
for use_gpu in use_gpu_set:
place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
opt_program = self._apply_ir_passes()
self.check_program(opt_program)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册