未验证 提交 ff226ba1 编写于 作者: C cyberslack_lee 提交者: GitHub

[xdoctest] reformat example code with google style in No.95-99 (#55834)

* test=docs_preview

* test=docs_preview
上级 9db219d1
......@@ -611,19 +611,21 @@ class QuantizedConv2DTranspose(Layer):
The only difference is that its inputs are all fake quantized.
Examples:
.. code-block:: python
import paddle
import paddle.nn as nn
from paddle.nn.quant.quant_layers import QuantizedConv2DTranspose
x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)
conv = nn.Conv2DTranspose(4, 6, (3, 3))
conv_quantized = QuantizedConv2DTranspose(conv)
y_quantized = conv_quantized(x_var)
y_var = conv(x_var)
print(y_var.shape, y_quantized.shape)
# [2, 6, 10, 10], [2, 6, 10, 10]
.. code-block:: python
>>> import paddle
>>> import paddle.nn as nn
>>> from paddle.nn.quant.quant_layers import QuantizedConv2DTranspose
>>> x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)
>>> conv = nn.Conv2DTranspose(4, 6, (3, 3))
>>> conv_quantized = QuantizedConv2DTranspose(conv)
>>> y_quantized = conv_quantized(x_var)
>>> y_var = conv(x_var)
>>> print(y_var.shape)
[2, 6, 10, 10]
>>> print(y_quantized.shape)
[2, 6, 10, 10]
"""
......
......@@ -23,31 +23,46 @@ class Stub(Layer):
the forward of a layer. Instead, we can create a stub and add it to the sublayers of the layer.
And call the stub before the functional API in the forward. The observer held by the
stub will observe or quantize the inputs of the functional API.
Args:
observer(QuanterFactory) - The configured information of the observer to be inserted.
It will use a global configuration to create the observers if the 'observer' is none.
Examples:
.. code-block:: python
import paddle
from paddle.nn.quant import Stub
from paddle.quantization.quanters import FakeQuanterWithAbsMaxObserver
from paddle.nn import Conv2D
from paddle.quantization import QAT, QuantConfig
quanter = FakeQuanterWithAbsMaxObserver(moving_rate=0.9)
class Model(paddle.nn.Layer):
def __init__(self, num_classes=10):
super().__init__()
self.conv = Conv2D(3, 6, 3, stride=1, padding=1)
self.quant = Stub(quanter)
def forward(self, inputs):
out = self.conv(inputs)
out = self.quant(out)
return paddle.nn.functional.relu(out)
model = Model()
q_config = QuantConfig(activation=quanter, weight=quanter)
qat = QAT(q_config)
quant_model = qat.quantize(model)
print(quant_model)
>>> import paddle
>>> from paddle.nn.quant import Stub
>>> from paddle.quantization.quanters import FakeQuanterWithAbsMaxObserver
>>> from paddle.nn import Conv2D
>>> from paddle.quantization import QAT, QuantConfig
>>> quanter = FakeQuanterWithAbsMaxObserver(moving_rate=0.9)
>>> class Model(paddle.nn.Layer):
... def __init__(self, num_classes=10):
... super().__init__()
... self.conv = Conv2D(3, 6, 3, stride=1, padding=1)
... self.quant = Stub(quanter)
...
... def forward(self, inputs):
... out = self.conv(inputs)
... out = self.quant(out)
... return paddle.nn.functional.relu(out)
>>> model = Model()
>>> q_config = QuantConfig(activation=quanter, weight=quanter)
>>> qat = QAT(q_config)
>>> quant_model = qat.quantize(model)
>>> print(quant_model)
Model(
(conv): QuantedConv2D(
(weight_quanter): FakeQuanterWithAbsMaxObserverLayer()
(activation_quanter): FakeQuanterWithAbsMaxObserverLayer()
)
(quant): QuanterStub(
(_observer): FakeQuanterWithAbsMaxObserverLayer()
)
)
"""
def __init__(self, observer=None):
......
......@@ -43,21 +43,23 @@ def clip_grad_norm_(
Returns:
Total norm of the parameter gradients (treated as a single vector).
Example:
.. code-block:: python
import paddle
x = paddle.uniform([10, 10], min=-1.0, max=1.0, dtype='float32')
max_norm = float(5.0)
linear = paddle.nn.Linear(in_features=10, out_features=10)
out = linear(x)
loss = paddle.mean(out)
loss.backward()
>>> import paddle
>>> x = paddle.uniform([10, 10], min=-1.0, max=1.0, dtype='float32')
>>> max_norm = float(5.0)
>>> linear = paddle.nn.Linear(in_features=10, out_features=10)
>>> out = linear(x)
>>> loss = paddle.mean(out)
>>> loss.backward()
paddle.nn.utils.clip_grad_norm_(linear.parameters(), max_norm)
>>> paddle.nn.utils.clip_grad_norm_(linear.parameters(), max_norm)
sdg = paddle.optimizer.SGD(learning_rate=0.1, parameters=linear.parameters())
sdg.step()
>>> sdg = paddle.optimizer.SGD(learning_rate=0.1, parameters=linear.parameters())
>>> sdg.step()
"""
if not paddle.in_dynamic_mode():
raise RuntimeError('this API can only run in dynamic mode.')
......
......@@ -31,19 +31,20 @@ def clip_grad_value_(
clip_value (float or int): maximum allowed value of the gradients.
The gradients are clipped in the range
:math:`\left[\text{-clip\_value}, \text{clip\_value}\right]`
Example:
.. code-block:: python
import paddle
x = paddle.uniform([10, 10], min=-10.0, max=10.0, dtype='float32')
clip_value = float(5.0)
linear = paddle.nn.Linear(in_features=10, out_features=10)
out = linear(x)
loss = paddle.mean(out)
loss.backward()
paddle.nn.utils.clip_grad_value_(linear.parameters(), clip_value)
sdg = paddle.optimizer.SGD(learning_rate=0.1, parameters=linear.parameters())
sdg.step()
>>> import paddle
>>> x = paddle.uniform([10, 10], min=-10.0, max=10.0, dtype='float32')
>>> clip_value = float(5.0)
>>> linear = paddle.nn.Linear(in_features=10, out_features=10)
>>> out = linear(x)
>>> loss = paddle.mean(out)
>>> loss.backward()
>>> paddle.nn.utils.clip_grad_value_(linear.parameters(), clip_value)
>>> sdg = paddle.optimizer.SGD(learning_rate=0.1, parameters=linear.parameters())
>>> sdg.step()
"""
if not paddle.in_dynamic_mode():
raise RuntimeError('this API can only run in dynamic mode.')
......
......@@ -182,28 +182,27 @@ def spectral_norm(
Layer, the original layer with the spectral norm hook.
Examples:
.. code-block:: python
from paddle.nn import Conv2D
from paddle.nn.utils import spectral_norm
conv = Conv2D(3, 1, 3)
sn_conv = spectral_norm(conv)
print(sn_conv)
# Conv2D(3, 1, kernel_size=[3, 3], data_format=NCHW)
print(sn_conv.weight)
# Tensor(shape=[1, 3, 3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
# [[[[-0.21090528, 0.18563725, -0.14127982],
# [-0.02310637, 0.03197737, 0.34353802],
# [-0.17117859, 0.33152047, -0.28408015]],
#
# [[-0.13336606, -0.01862637, 0.06959272],
# [-0.02236020, -0.27091628, -0.24532901],
# [ 0.27254242, 0.15516677, 0.09036587]],
#
# [[ 0.30169338, -0.28146112, -0.11768346],
# [-0.45765871, -0.12504843, -0.17482486],
# [-0.36866254, -0.19969313, 0.08783543]]]])
.. code-block:: python
>>> from paddle.nn import Conv2D
>>> from paddle.nn.utils import spectral_norm
>>> paddle.seed(2023)
>>> conv = Conv2D(3, 1, 3)
>>> sn_conv = spectral_norm(conv)
>>> print(sn_conv)
Conv2D(3, 1, kernel_size=[3, 3], data_format=NCHW)
>>> # Conv2D(3, 1, kernel_size=[3, 3], data_format=NCHW)
>>> print(sn_conv.weight)
Tensor(shape=[1, 3, 3, 3], dtype=float32, place=Place(cpu), stop_gradient=False,
[[[[ 0.01668976, 0.30305523, 0.11405435],
[-0.06765547, -0.50396705, -0.40925547],
[ 0.47344422, 0.03628403, 0.45277366]],
[[-0.15177251, -0.16305730, -0.15723954],
[-0.28081197, -0.09183260, -0.08081978],
[-0.40895155, 0.18298769, -0.29325116]],
[[ 0.21819633, -0.01822380, -0.50351536],
[-0.06262003, 0.17713565, 0.20517939],
[ 0.16659889, -0.14333329, 0.05228264]]]])
"""
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册