未验证 提交 ff06df6d 编写于 作者: N Nyakku Shigure 提交者: GitHub

[PaddlePaddle Hackathon] add InceptionV3 (#36064)

* add inceptionv3
Co-authored-by: Ainavo's avatarAinavo <ainavo@163.com>
Co-authored-by: Npithygit <pyg20200403@163.com>
上级 ed478a3e
......@@ -54,7 +54,7 @@ class TestPretrainedModel(unittest.TestCase):
def test_models(self):
arches = [
'mobilenet_v1', 'mobilenet_v2', 'resnet18', 'vgg16', 'alexnet',
'resnext50_32x4d'
'resnext50_32x4d', 'inception_v3'
]
for arch in arches:
self.infer(arch)
......
......@@ -91,6 +91,9 @@ class TestVisonModels(unittest.TestCase):
def test_resnext152_64x4d(self):
self.models_infer('resnext152_64x4d')
def test_inception_v3(self):
self.models_infer('inception_v3')
def test_vgg16_num_classes(self):
vgg16 = models.__dict__['vgg16'](pretrained=False, num_classes=10)
......
......@@ -53,6 +53,8 @@ from .models import resnext101_32x4d # noqa: F401
from .models import resnext101_64x4d # noqa: F401
from .models import resnext152_32x4d # noqa: F401
from .models import resnext152_64x4d # noqa: F401
from .models import InceptionV3 # noqa: F401
from .models import inception_v3 # noqa: F401
from .transforms import BaseTransform # noqa: F401
from .transforms import Compose # noqa: F401
from .transforms import Resize # noqa: F401
......
......@@ -37,6 +37,8 @@ from .resnext import resnext101_32x4d # noqa: F401
from .resnext import resnext101_64x4d # noqa: F401
from .resnext import resnext152_32x4d # noqa: F401
from .resnext import resnext152_64x4d # noqa: F401
from .inceptionv3 import InceptionV3 # noqa: F401
from .inceptionv3 import inception_v3 # noqa: F401
__all__ = [ #noqa
'ResNet',
......@@ -63,5 +65,7 @@ __all__ = [ #noqa
'resnext101_32x4d',
'resnext101_64x4d',
'resnext152_32x4d',
'resnext152_64x4d'
'resnext152_64x4d',
'InceptionV3',
'inception_v3'
]
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
import paddle.nn as nn
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.nn.initializer import Uniform
from paddle.fluid.param_attr import ParamAttr
from paddle.utils.download import get_weights_path_from_url
__all__ = []
model_urls = {
"inception_v3":
("https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/InceptionV3_pretrained.pdparams",
"e4d0905a818f6bb7946e881777a8a935")
}
class ConvBNLayer(nn.Layer):
def __init__(self,
num_channels,
num_filters,
filter_size,
stride=1,
padding=0,
groups=1,
act="relu"):
super().__init__()
self.act = act
self.conv = Conv2D(
in_channels=num_channels,
out_channels=num_filters,
kernel_size=filter_size,
stride=stride,
padding=padding,
groups=groups,
bias_attr=False)
self.bn = BatchNorm(num_filters)
self.relu = nn.ReLU()
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
if self.act:
x = self.relu(x)
return x
class InceptionStem(nn.Layer):
def __init__(self):
super().__init__()
self.conv_1a_3x3 = ConvBNLayer(
num_channels=3, num_filters=32, filter_size=3, stride=2, act="relu")
self.conv_2a_3x3 = ConvBNLayer(
num_channels=32,
num_filters=32,
filter_size=3,
stride=1,
act="relu")
self.conv_2b_3x3 = ConvBNLayer(
num_channels=32,
num_filters=64,
filter_size=3,
padding=1,
act="relu")
self.max_pool = MaxPool2D(kernel_size=3, stride=2, padding=0)
self.conv_3b_1x1 = ConvBNLayer(
num_channels=64, num_filters=80, filter_size=1, act="relu")
self.conv_4a_3x3 = ConvBNLayer(
num_channels=80, num_filters=192, filter_size=3, act="relu")
def forward(self, x):
x = self.conv_1a_3x3(x)
x = self.conv_2a_3x3(x)
x = self.conv_2b_3x3(x)
x = self.max_pool(x)
x = self.conv_3b_1x1(x)
x = self.conv_4a_3x3(x)
x = self.max_pool(x)
return x
class InceptionA(nn.Layer):
def __init__(self, num_channels, pool_features):
super().__init__()
self.branch1x1 = ConvBNLayer(
num_channels=num_channels,
num_filters=64,
filter_size=1,
act="relu")
self.branch5x5_1 = ConvBNLayer(
num_channels=num_channels,
num_filters=48,
filter_size=1,
act="relu")
self.branch5x5_2 = ConvBNLayer(
num_channels=48,
num_filters=64,
filter_size=5,
padding=2,
act="relu")
self.branch3x3dbl_1 = ConvBNLayer(
num_channels=num_channels,
num_filters=64,
filter_size=1,
act="relu")
self.branch3x3dbl_2 = ConvBNLayer(
num_channels=64,
num_filters=96,
filter_size=3,
padding=1,
act="relu")
self.branch3x3dbl_3 = ConvBNLayer(
num_channels=96,
num_filters=96,
filter_size=3,
padding=1,
act="relu")
self.branch_pool = AvgPool2D(
kernel_size=3, stride=1, padding=1, exclusive=False)
self.branch_pool_conv = ConvBNLayer(
num_channels=num_channels,
num_filters=pool_features,
filter_size=1,
act="relu")
def forward(self, x):
branch1x1 = self.branch1x1(x)
branch5x5 = self.branch5x5_1(x)
branch5x5 = self.branch5x5_2(branch5x5)
branch3x3dbl = self.branch3x3dbl_1(x)
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
branch_pool = self.branch_pool(x)
branch_pool = self.branch_pool_conv(branch_pool)
x = paddle.concat(
[branch1x1, branch5x5, branch3x3dbl, branch_pool], axis=1)
return x
class InceptionB(nn.Layer):
def __init__(self, num_channels):
super().__init__()
self.branch3x3 = ConvBNLayer(
num_channels=num_channels,
num_filters=384,
filter_size=3,
stride=2,
act="relu")
self.branch3x3dbl_1 = ConvBNLayer(
num_channels=num_channels,
num_filters=64,
filter_size=1,
act="relu")
self.branch3x3dbl_2 = ConvBNLayer(
num_channels=64,
num_filters=96,
filter_size=3,
padding=1,
act="relu")
self.branch3x3dbl_3 = ConvBNLayer(
num_channels=96,
num_filters=96,
filter_size=3,
stride=2,
act="relu")
self.branch_pool = MaxPool2D(kernel_size=3, stride=2)
def forward(self, x):
branch3x3 = self.branch3x3(x)
branch3x3dbl = self.branch3x3dbl_1(x)
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
branch_pool = self.branch_pool(x)
x = paddle.concat([branch3x3, branch3x3dbl, branch_pool], axis=1)
return x
class InceptionC(nn.Layer):
def __init__(self, num_channels, channels_7x7):
super().__init__()
self.branch1x1 = ConvBNLayer(
num_channels=num_channels,
num_filters=192,
filter_size=1,
act="relu")
self.branch7x7_1 = ConvBNLayer(
num_channels=num_channels,
num_filters=channels_7x7,
filter_size=1,
stride=1,
act="relu")
self.branch7x7_2 = ConvBNLayer(
num_channels=channels_7x7,
num_filters=channels_7x7,
filter_size=(1, 7),
stride=1,
padding=(0, 3),
act="relu")
self.branch7x7_3 = ConvBNLayer(
num_channels=channels_7x7,
num_filters=192,
filter_size=(7, 1),
stride=1,
padding=(3, 0),
act="relu")
self.branch7x7dbl_1 = ConvBNLayer(
num_channels=num_channels,
num_filters=channels_7x7,
filter_size=1,
act="relu")
self.branch7x7dbl_2 = ConvBNLayer(
num_channels=channels_7x7,
num_filters=channels_7x7,
filter_size=(7, 1),
padding=(3, 0),
act="relu")
self.branch7x7dbl_3 = ConvBNLayer(
num_channels=channels_7x7,
num_filters=channels_7x7,
filter_size=(1, 7),
padding=(0, 3),
act="relu")
self.branch7x7dbl_4 = ConvBNLayer(
num_channels=channels_7x7,
num_filters=channels_7x7,
filter_size=(7, 1),
padding=(3, 0),
act="relu")
self.branch7x7dbl_5 = ConvBNLayer(
num_channels=channels_7x7,
num_filters=192,
filter_size=(1, 7),
padding=(0, 3),
act="relu")
self.branch_pool = AvgPool2D(
kernel_size=3, stride=1, padding=1, exclusive=False)
self.branch_pool_conv = ConvBNLayer(
num_channels=num_channels,
num_filters=192,
filter_size=1,
act="relu")
def forward(self, x):
branch1x1 = self.branch1x1(x)
branch7x7 = self.branch7x7_1(x)
branch7x7 = self.branch7x7_2(branch7x7)
branch7x7 = self.branch7x7_3(branch7x7)
branch7x7dbl = self.branch7x7dbl_1(x)
branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)
branch_pool = self.branch_pool(x)
branch_pool = self.branch_pool_conv(branch_pool)
x = paddle.concat(
[branch1x1, branch7x7, branch7x7dbl, branch_pool], axis=1)
return x
class InceptionD(nn.Layer):
def __init__(self, num_channels):
super().__init__()
self.branch3x3_1 = ConvBNLayer(
num_channels=num_channels,
num_filters=192,
filter_size=1,
act="relu")
self.branch3x3_2 = ConvBNLayer(
num_channels=192,
num_filters=320,
filter_size=3,
stride=2,
act="relu")
self.branch7x7x3_1 = ConvBNLayer(
num_channels=num_channels,
num_filters=192,
filter_size=1,
act="relu")
self.branch7x7x3_2 = ConvBNLayer(
num_channels=192,
num_filters=192,
filter_size=(1, 7),
padding=(0, 3),
act="relu")
self.branch7x7x3_3 = ConvBNLayer(
num_channels=192,
num_filters=192,
filter_size=(7, 1),
padding=(3, 0),
act="relu")
self.branch7x7x3_4 = ConvBNLayer(
num_channels=192,
num_filters=192,
filter_size=3,
stride=2,
act="relu")
self.branch_pool = MaxPool2D(kernel_size=3, stride=2)
def forward(self, x):
branch3x3 = self.branch3x3_1(x)
branch3x3 = self.branch3x3_2(branch3x3)
branch7x7x3 = self.branch7x7x3_1(x)
branch7x7x3 = self.branch7x7x3_2(branch7x7x3)
branch7x7x3 = self.branch7x7x3_3(branch7x7x3)
branch7x7x3 = self.branch7x7x3_4(branch7x7x3)
branch_pool = self.branch_pool(x)
x = paddle.concat([branch3x3, branch7x7x3, branch_pool], axis=1)
return x
class InceptionE(nn.Layer):
def __init__(self, num_channels):
super().__init__()
self.branch1x1 = ConvBNLayer(
num_channels=num_channels,
num_filters=320,
filter_size=1,
act="relu")
self.branch3x3_1 = ConvBNLayer(
num_channels=num_channels,
num_filters=384,
filter_size=1,
act="relu")
self.branch3x3_2a = ConvBNLayer(
num_channels=384,
num_filters=384,
filter_size=(1, 3),
padding=(0, 1),
act="relu")
self.branch3x3_2b = ConvBNLayer(
num_channels=384,
num_filters=384,
filter_size=(3, 1),
padding=(1, 0),
act="relu")
self.branch3x3dbl_1 = ConvBNLayer(
num_channels=num_channels,
num_filters=448,
filter_size=1,
act="relu")
self.branch3x3dbl_2 = ConvBNLayer(
num_channels=448,
num_filters=384,
filter_size=3,
padding=1,
act="relu")
self.branch3x3dbl_3a = ConvBNLayer(
num_channels=384,
num_filters=384,
filter_size=(1, 3),
padding=(0, 1),
act="relu")
self.branch3x3dbl_3b = ConvBNLayer(
num_channels=384,
num_filters=384,
filter_size=(3, 1),
padding=(1, 0),
act="relu")
self.branch_pool = AvgPool2D(
kernel_size=3, stride=1, padding=1, exclusive=False)
self.branch_pool_conv = ConvBNLayer(
num_channels=num_channels,
num_filters=192,
filter_size=1,
act="relu")
def forward(self, x):
branch1x1 = self.branch1x1(x)
branch3x3 = self.branch3x3_1(x)
branch3x3 = [
self.branch3x3_2a(branch3x3),
self.branch3x3_2b(branch3x3),
]
branch3x3 = paddle.concat(branch3x3, axis=1)
branch3x3dbl = self.branch3x3dbl_1(x)
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
branch3x3dbl = [
self.branch3x3dbl_3a(branch3x3dbl),
self.branch3x3dbl_3b(branch3x3dbl),
]
branch3x3dbl = paddle.concat(branch3x3dbl, axis=1)
branch_pool = self.branch_pool(x)
branch_pool = self.branch_pool_conv(branch_pool)
x = paddle.concat(
[branch1x1, branch3x3, branch3x3dbl, branch_pool], axis=1)
return x
class InceptionV3(nn.Layer):
"""
InceptionV3
Args:
num_classes (int, optional): output dim of last fc layer. If num_classes <=0, last fc layer
will not be defined. Default: 1000.
with_pool (bool, optional): use pool before the last fc layer or not. Default: True.
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import InceptionV3
inception_v3 = InceptionV3()
x = paddle.rand([1, 3, 299, 299])
out = inception_v3(x)
print(out.shape)
"""
def __init__(self, num_classes=1000, with_pool=True):
super().__init__()
self.num_classes = num_classes
self.with_pool = with_pool
self.layers_config = {
"inception_a": [[192, 256, 288], [32, 64, 64]],
"inception_b": [288],
"inception_c": [[768, 768, 768, 768], [128, 160, 160, 192]],
"inception_d": [768],
"inception_e": [1280, 2048]
}
inception_a_list = self.layers_config["inception_a"]
inception_c_list = self.layers_config["inception_c"]
inception_b_list = self.layers_config["inception_b"]
inception_d_list = self.layers_config["inception_d"]
inception_e_list = self.layers_config["inception_e"]
self.inception_stem = InceptionStem()
self.inception_block_list = nn.LayerList()
for i in range(len(inception_a_list[0])):
inception_a = InceptionA(inception_a_list[0][i],
inception_a_list[1][i])
self.inception_block_list.append(inception_a)
for i in range(len(inception_b_list)):
inception_b = InceptionB(inception_b_list[i])
self.inception_block_list.append(inception_b)
for i in range(len(inception_c_list[0])):
inception_c = InceptionC(inception_c_list[0][i],
inception_c_list[1][i])
self.inception_block_list.append(inception_c)
for i in range(len(inception_d_list)):
inception_d = InceptionD(inception_d_list[i])
self.inception_block_list.append(inception_d)
for i in range(len(inception_e_list)):
inception_e = InceptionE(inception_e_list[i])
self.inception_block_list.append(inception_e)
if with_pool:
self.avg_pool = AdaptiveAvgPool2D(1)
if num_classes > 0:
self.dropout = Dropout(p=0.2, mode="downscale_in_infer")
stdv = 1.0 / math.sqrt(2048 * 1.0)
self.fc = Linear(
2048,
num_classes,
weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)),
bias_attr=ParamAttr())
def forward(self, x):
x = self.inception_stem(x)
for inception_block in self.inception_block_list:
x = inception_block(x)
if self.with_pool:
x = self.avg_pool(x)
if self.num_classes > 0:
x = paddle.reshape(x, shape=[-1, 2048])
x = self.dropout(x)
x = self.fc(x)
return x
def inception_v3(pretrained=False, **kwargs):
"""
InceptionV3 model from
`"Rethinking the Inception Architecture for Computer Vision" <https://arxiv.org/pdf/1512.00567.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import inception_v3
# build model
model = inception_v3()
# build model and load imagenet pretrained weight
# model = inception_v3(pretrained=True)
x = paddle.rand([1, 3, 299, 299])
out = model(x)
print(out.shape)
"""
model = InceptionV3(**kwargs)
arch = "inception_v3"
if pretrained:
assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format(
arch)
weight_path = get_weights_path_from_url(model_urls[arch][0],
model_urls[arch][1])
param = paddle.load(weight_path)
model.set_dict(param)
return model
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册