提交 fe70c69f 编写于 作者: Y yangyaming 提交者: fengjiayi

Add forward and backward.

上级 cfe611f1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/sequence_pad_op.h"
namespace paddle {
namespace operators {
class SequencePadOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of SequencePadOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of SequencePadOp should not be null.");
auto x_dims = ctx->GetInputDim("X");
PADDLE_ENFORCE_EQ(x_dims.size(), 2,
"Only support 2-D tensor, rank of Input(X) should be 2.");
auto out_dims = x_dims;
if (ctx->IsRuntime()) {
framework::Variable* x_var =
boost::get<framework::Variable*>(ctx->GetInputVarPtrs("X")[0]);
auto& x_lod = x_var->Get<LoDTensor>().lod();
PADDLE_ENFORCE_GE(x_lod.size(), 1,
"Input(X) should be sequences containing lod.");
auto last_level_lod = x_lod[x_lod.size() - 1];
size_t max_len = 0;
for (size_t i = 1; i < last_level_lod.size(); ++i) {
auto seq_len = last_level_lod[i] - last_level_lod[i - 1];
max_len = max_len < seq_len ? seq_len : max_len;
}
out_dims[0] = max_len * (last_level_lod.size() - 1);
} else {
framework::VarDesc* x_desc =
boost::get<framework::VarDesc*>(ctx->GetInputVarPtrs("X")[0]);
PADDLE_ENFORCE_GE(x_desc->GetLoDLevel(), 1,
"Input(X) should be sequences containing lod.");
out_dims[0] = -1;
}
ctx->SetOutputDim("Out", out_dims);
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
ctx.device_context());
}
};
class SequencePadOpMaker : public framework::OpProtoAndCheckerMaker {
public:
SequencePadOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X",
"(LoDTensor, default LoDTensor<float>) Input variable which "
"should contain lod information. Length of each sequence would "
"be computed from the most bottom level lod.");
AddOutput("Out",
"(Tensor) Output variable which would be a common tensor "
"without lod. Each sequence would be padded to the maximum "
"length.");
AddAttr<float>("pad_value",
"(float, default 0.0) Value to be padded "
"to the end of each sequence.");
AddComment(R"DOC(
)DOC");
}
};
class SequencePadGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of SequencePadGradOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
"Input(Out@GRAD) of SequencePadGradOp should not be null.");
if (ctx->HasOutput(framework::GradVarName("X"))) {
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(sequence_pad, ops::SequencePadOp, ops::SequencePadOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(sequence_pad_grad, ops::SequencePadGradOp);
REGISTER_OP_CPU_KERNEL(
sequence_pad,
ops::SequencePadOpKernel<paddle::platform::CPUDeviceContext, float>,
ops::SequencePadOpKernel<paddle::platform::CPUDeviceContext, double>,
ops::SequencePadOpKernel<paddle::platform::CPUDeviceContext, int>,
ops::SequencePadOpKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
sequence_pad_grad,
ops::SequencePadGradOpKernel<paddle::platform::CPUDeviceContext, float>,
ops::SequencePadGradOpKernel<paddle::platform::CPUDeviceContext, double>,
ops::SequencePadGradOpKernel<paddle::platform::CPUDeviceContext, int>,
ops::SequencePadGradOpKernel<paddle::platform::CPUDeviceContext, int64_t>);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/sequence_pad_op.h"
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
sequence_pad,
ops::SequencePadOpKernel<paddle::platform::CUDADeviceContext, float>);
REGISTER_OP_CUDA_KERNEL(
sequence_pad_grad,
ops::SequencePadGradOpKernel<paddle::platform::CUDADeviceContext, float>);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace paddle {
namespace operators {
using LoDTensor = framework::LoDTensor;
using LoD = framework::LoD;
// @TODO clean code
template <typename DeviceContext, typename T>
class SequencePadOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x_ptr = ctx.Input<LoDTensor>("X");
auto* out_ptr = ctx.Output<LoDTensor>("Out");
out_ptr->mutable_data<T>(ctx.GetPlace());
T pad_value = static_cast<T>(ctx.Attr<float>("pad_value"));
math::SetConstant<DeviceContext, T> set_func;
set_func(ctx.template device_context<DeviceContext>(), out_ptr, pad_value);
auto& x_lod = x_ptr->lod();
auto& x_last_level_lod = x_lod[x_lod.size() - 1];
auto seq_num = x_last_level_lod.size() - 1;
auto max_len = out_ptr->dims()[0] / seq_num;
PADDLE_ENFORCE_EQ(max_len * seq_num, out_ptr->dims()[0],
"First dimension of `Out` should be equal to "
"maximum length mulplied by sequence number.");
for (size_t i = 1; i < x_last_level_lod.size(); ++i) {
auto x_start = x_last_level_lod[i - 1];
auto x_end = x_last_level_lod[i];
auto out_start = (i - 1) * max_len;
auto out_end = out_start + (x_end - x_start);
auto x_sub_tensor = x_ptr->Slice(x_start, x_end);
auto out_sub_tensor = out_ptr->Slice(out_start, out_end);
framework::TensorCopy(x_sub_tensor, ctx.GetPlace(), &out_sub_tensor);
}
}
};
template <typename DeviceContext, typename T>
class SequencePadGradOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x_ptr = ctx.Input<LoDTensor>("X");
auto* g_out_ptr = ctx.Input<LoDTensor>(framework::GradVarName("Out"));
auto* g_x_ptr = ctx.Output<LoDTensor>(framework::GradVarName("X"));
math::SetConstant<DeviceContext, T> set_func;
set_func(ctx.template device_context<DeviceContext>(), g_x_ptr,
static_cast<T>(0));
auto& x_lod = x_ptr->lod();
auto& x_last_level_lod = x_lod[x_lod.size() - 1];
auto seq_num = x_last_level_lod.size() - 1;
int64_t max_len = g_out_ptr->dims()[0] / seq_num;
PADDLE_ENFORCE_EQ(max_len * seq_num, g_out_ptr->dims()[0],
"First dimension of `Out` should be equal to "
"maximum length mulplied by sequence number.");
for (size_t i = 1; i < x_last_level_lod.size(); ++i) {
auto x_start = x_last_level_lod[i - 1];
auto x_end = x_last_level_lod[i];
auto out_start = (i - 1) * max_len;
auto out_end = out_start + (x_end - x_start);
auto g_out_sub = g_out_ptr->Slice(out_start, out_end);
auto g_x_sub = g_x_ptr->Slice(x_start, x_end);
framework::TensorCopy(g_x_sub, ctx.GetPlace(), &g_out_sub);
}
}
};
} // namespace operators
} // namespace paddle
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册