Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
fe2cf39f
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
fe2cf39f
编写于
11月 19, 2020
作者:
W
Wilber
提交者:
GitHub
11月 19, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[2.0] Update py_func English doc. (#28646)
上级
16a80814
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
38 addition
and
23 deletion
+38
-23
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+38
-23
未找到文件。
python/paddle/fluid/layers/nn.py
浏览文件 @
fe2cf39f
...
...
@@ -13496,16 +13496,16 @@ def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
principe of py_func is that Tensor and numpy array can be converted to each
other easily. So you can use Python and numpy API to register a python OP.
The forward
function of the registered OP is ``func`` and the backward function
of that is
``backward_func``. Paddle will call ``func`` at forward runtime and
The forward function of the registered OP is ``func`` and the backward function
of that is ``backward_func``. Paddle will call ``func`` at forward runtime and
call ``backward_func`` at backward runtime(if ``backward_func`` is not None).
``x`` is the input of ``func``, whose type must be Tensor; ``out`` is
the output of ``func``, whose type can be either Tensor or numpy array.
The input of the backward function ``backward_func`` is ``x``, ``out`` and
the gradient of ``out``. If
some variables of ``out`` have no gradient, the
relevant input variable of ``backward_func`` is None. If some variables of
``x`` do not have a gradient, the user should
return None in ``backward_func``.
the gradient of ``out``. If
``out`` have no gradient, the relevant input of
``backward_func`` is None. If ``x`` do not have a gradient, the user should
return None in ``backward_func``.
The data type and shape of ``out`` should also be set correctly before this
API is called, and the data type and shape of the gradient of ``out`` and
...
...
@@ -13520,27 +13520,26 @@ def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
function and the forward input ``x``. In ``func`` , it's suggested that we
actively convert Tensor into a numpy array, so that we can use Python and
numpy API arbitrarily. If not, some operations of numpy may not be compatible.
x (Variable|tuple(Variale)|list[Variale]): The input of the forward function ``func``.
It can be Variable|tuple(Variale)|list[Variale], where Variable is Tensor or
Tenosor. In addition, Multiple Variable should be passed in the form of tuple(Variale)
or list[Variale].
out (Variable|tuple(Variale)|list[Variale]): The output of the forward function ``func``,
it can be Variable|tuple(Variale)|list[Variale], where Variable can be either Tensor
or numpy array. Since Paddle cannot automatically infer the shape and type of ``out``,
you must create ``out`` in advance.
x (Tensor|tuple(Tensor)|list[Tensor]): The input of the forward function ``func``.
It can be Tensor|tuple(Tensor)|list[Tensor]. In addition, Multiple Tensor
should be passed in the form of tuple(Tensor) or list[Tensor].
out (T|tuple(T)|list[T]): The output of the forward function ``func``, it can be
T|tuple(T)|list[T], where T can be either Tensor or numpy array. Since Paddle
cannot automatically infer the shape and type of ``out``, you must create
``out`` in advance.
backward_func (callable, optional): The backward function of the registered OP.
Its default value is None, which means there is no reverse calculation. If
it is not None, ``backward_func`` is called to calculate the gradient of
``x`` when the network is at backward runtime.
skip_vars_in_backward_input (
Variable
, optional): It's used to limit the input
variable list of ``backward_func``, and it can be Variable|tuple(Variale)|list[Variale
].
skip_vars_in_backward_input (
Tensor
, optional): It's used to limit the input
list of ``backward_func``, and it can be Tensor|tuple(Tensor)|list[Tensor
].
It must belong to either ``x`` or ``out``. The default value is None, which means
that no
variable
s need to be removed from ``x`` and ``out``. If it is not None,
these
variable
s will not be the input of ``backward_func``. This parameter is only
that no
tensor
s need to be removed from ``x`` and ``out``. If it is not None,
these
tensor
s will not be the input of ``backward_func``. This parameter is only
useful when ``backward_func`` is not None.
Returns:
Variable|tuple(Variale)|list[Variale
]: The output ``out`` of the forward function ``func``.
Tensor|tuple(Tensor)|list[Tensor
]: The output ``out`` of the forward function ``func``.
Examples:
.. code-block:: python
...
...
@@ -13548,6 +13547,7 @@ def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
# example 1:
import paddle
import six
import numpy as np
paddle.enable_static()
...
...
@@ -13578,16 +13578,31 @@ def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
dtype=hidden.dtype, shape=hidden.shape)
# User-defined forward and backward
hidden = paddle.static.
nn.
py_func(func=tanh, x=hidden,
hidden = paddle.static.py_func(func=tanh, x=hidden,
out=new_hidden, backward_func=tanh_grad,
skip_vars_in_backward_input=hidden)
# User-defined debug functions that print out the input Tensor
paddle.static.
nn.
py_func(func=debug_func, x=hidden, out=None)
paddle.static.py_func(func=debug_func, x=hidden, out=None)
prediction = paddle.static.nn.fc(hidden, size=10, activation='softmax')
loss = paddle.static.nn.cross_entropy(input=prediction, label=label)
return paddle.mean(loss)
ce_loss = paddle.nn.loss.CrossEntropyLoss()
return ce_loss(prediction, label)
x = paddle.static.data(name='x', shape=[1,4], dtype='float32')
y = paddle.static.data(name='y', shape=[1,10], dtype='int64')
res = simple_net(x, y)
exe = paddle.static.Executor(paddle.CPUPlace())
exe.run(paddle.static.default_startup_program())
input1 = np.random.random(size=[1,4]).astype('float32')
input2 = np.random.randint(1, 10, size=[1,10], dtype='int64')
out = exe.run(paddle.static.default_main_program(),
feed={'x':input1, 'y':input2},
fetch_list=[res.name])
print(out)
.. code-block:: python
# example 2:
# This example shows how to turn Tensor into numpy array and
...
...
@@ -13629,7 +13644,7 @@ def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
output = create_tmp_var('output','int32', [3,1])
# Multiple Variable should be passed in the form of tuple(Variale) or list[Variale]
paddle.static.
nn.
py_func(func=element_wise_add, x=[x,y], out=output)
paddle.static.py_func(func=element_wise_add, x=[x,y], out=output)
exe=paddle.static.Executor(paddle.CPUPlace())
exe.run(start_program)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录