提交 fe21578a 编写于 作者: S Sylwester Fraczek

create test for quantized resnet50

test=develop
上级 2d8b7b3a
...@@ -23,6 +23,12 @@ function(inference_analysis_api_test target install_dir filename) ...@@ -23,6 +23,12 @@ function(inference_analysis_api_test target install_dir filename)
ARGS --infer_model=${install_dir}/model --infer_data=${install_dir}/data.txt) ARGS --infer_model=${install_dir}/model --infer_data=${install_dir}/data.txt)
endfunction() endfunction()
function(inference_analysis_api_int8_test target model_dir data_dir filename)
inference_analysis_test(${target} SRCS ${filename}
EXTRA_DEPS ${INFERENCE_EXTRA_DEPS} benchmark
ARGS --infer_model=${model_dir}/model --infer_data=${data_dir}/data.bin --batch_size=100)
endfunction()
function(inference_analysis_api_test_with_fake_data target install_dir filename model_name) function(inference_analysis_api_test_with_fake_data target install_dir filename model_name)
download_model(${install_dir} ${model_name}) download_model(${install_dir} ${model_name})
inference_analysis_test(${target} SRCS ${filename} inference_analysis_test(${target} SRCS ${filename}
...@@ -138,6 +144,28 @@ inference_analysis_api_test_with_fake_data(test_analyzer_resnet50 ...@@ -138,6 +144,28 @@ inference_analysis_api_test_with_fake_data(test_analyzer_resnet50
inference_analysis_api_test_with_fake_data(test_analyzer_mobilenet_depthwise_conv inference_analysis_api_test_with_fake_data(test_analyzer_mobilenet_depthwise_conv
"${INFERENCE_DEMO_INSTALL_DIR}/mobilenet_depthwise_conv" analyzer_resnet50_tester.cc "mobilenet_model.tar.gz" SERIAL) "${INFERENCE_DEMO_INSTALL_DIR}/mobilenet_depthwise_conv" analyzer_resnet50_tester.cc "mobilenet_model.tar.gz" SERIAL)
# int8 image classification tests
if(WITH_MKLDNN)
set(INT8_DATA_DIR "${INFERENCE_DEMO_INSTALL_DIR}/int8")
if (NOT EXISTS ${INT8_DATA_DIR})
inference_download_and_uncompress(${INT8_DATA_DIR} "http://paddle-inference-dist.bj.bcebos.com/int8" "imagenet_val_100.bin.tar.gz")
endif()
#resnet50 int8
set(INT8_RESNET50_MODEL_DIR "${INT8_DATA_DIR}/resnet50")
if (NOT EXISTS ${INT8_RESNET50_MODEL_DIR})
inference_download_and_uncompress(${INT8_RESNET50_MODEL_DIR} "http://paddle-inference-dist.bj.bcebos.com/int8" "resnet50_int8_model.tar.gz" )
endif()
inference_analysis_api_int8_test(test_analyzer_int8_resnet50 ${INT8_RESNET50_MODEL_DIR} ${INT8_DATA_DIR} analyzer_int8_image_classification_tester.cc SERIAL)
#mobilenet int8
set(INT8_MOBILENET_MODEL_DIR "${INT8_DATA_DIR}/mobilenet")
if (NOT EXISTS ${INT8_MOBILENET_MODEL_DIR})
inference_download_and_uncompress(${INT8_MOBILENET_MODEL_DIR} "http://paddle-inference-dist.bj.bcebos.com/int8" "mobilenetv1_int8_model.tar.gz" )
endif()
inference_analysis_api_int8_test(test_analyzer_int8_mobilenet ${INT8_MOBILENET_MODEL_DIR} ${INT8_DATA_DIR} analyzer_int8_image_classification_tester.cc SERIAL)
endif()
# bert, max_len=20, embedding_dim=128 # bert, max_len=20, embedding_dim=128
set(BERT_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/bert_emb128") set(BERT_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/bert_emb128")
download_model_and_data(${BERT_INSTALL_DIR} "bert_emb128_model.tar.gz" "bert_data_len20.txt.tar.gz") download_model_and_data(${BERT_INSTALL_DIR} "bert_emb128_model.tar.gz" "bert_data_len20.txt.tar.gz")
......
...@@ -53,19 +53,6 @@ void Split(const std::string &line, char sep, std::vector<T> *v) { ...@@ -53,19 +53,6 @@ void Split(const std::string &line, char sep, std::vector<T> *v) {
} }
} }
template <typename T>
constexpr paddle::PaddleDType GetPaddleDType();
template <>
constexpr paddle::PaddleDType GetPaddleDType<int64_t>() {
return paddle::PaddleDType::INT64;
}
template <>
constexpr paddle::PaddleDType GetPaddleDType<float>() {
return paddle::PaddleDType::FLOAT32;
}
// Parse tensor from string // Parse tensor from string
template <typename T> template <typename T>
bool ParseTensor(const std::string &field, paddle::PaddleTensor *tensor) { bool ParseTensor(const std::string &field, paddle::PaddleTensor *tensor) {
......
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <fstream>
#include <iostream>
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
#include "paddle/fluid/inference/tests/api/tester_helper.h"
DEFINE_int32(iterations, 0, "Number of iterations");
namespace paddle {
namespace inference {
namespace analysis {
void SetConfig(AnalysisConfig *cfg) {
cfg->SetModel(FLAGS_infer_model);
cfg->SetProgFile("__model__");
cfg->DisableGpu();
cfg->SwitchIrOptim();
cfg->SwitchSpecifyInputNames(false);
cfg->SetCpuMathLibraryNumThreads(FLAGS_paddle_num_threads);
cfg->EnableMKLDNN();
}
template <typename T>
class TensorReader {
public:
TensorReader(std::ifstream &file, size_t beginning_offset,
std::vector<int> shape, std::string name)
: file_(file), position(beginning_offset), shape_(shape), name_(name) {
numel =
std::accumulate(shape_.begin(), shape_.end(), 1, std::multiplies<T>());
}
PaddleTensor NextBatch() {
PaddleTensor tensor;
tensor.name = name_;
tensor.shape = shape_;
tensor.dtype = GetPaddleDType<T>();
tensor.data.Resize(numel * sizeof(T));
file_.seekg(position);
file_.read(static_cast<char *>(tensor.data.data()), numel * sizeof(T));
position = file_.tellg();
if (file_.eof()) LOG(ERROR) << name_ << ": reached end of stream";
if (file_.fail())
throw std::runtime_error(name_ + ": failed reading file.");
return tensor;
}
protected:
std::ifstream &file_;
size_t position;
std::vector<int> shape_;
std::string name_;
size_t numel;
};
std::shared_ptr<std::vector<PaddleTensor>> GetWarmupData(
const std::vector<std::vector<PaddleTensor>> &test_data, int num_images) {
int test_data_batch_size = test_data[0][0].shape[0];
CHECK_LE(static_cast<size_t>(num_images),
test_data.size() * test_data_batch_size);
PaddleTensor images;
images.name = "input";
images.shape = {num_images, 3, 224, 224};
images.dtype = PaddleDType::FLOAT32;
images.data.Resize(sizeof(float) * num_images * 3 * 224 * 224);
PaddleTensor labels;
labels.name = "labels";
labels.shape = {num_images, 1};
labels.dtype = PaddleDType::INT64;
labels.data.Resize(sizeof(int64_t) * num_images);
for (int i = 0; i < num_images; i++) {
auto batch = i / test_data_batch_size;
auto element_in_batch = i % test_data_batch_size;
std::copy_n(static_cast<float *>(test_data[batch][0].data.data()) +
element_in_batch * 3 * 224 * 224,
3 * 224 * 224,
static_cast<float *>(images.data.data()) + i * 3 * 224 * 224);
std::copy_n(static_cast<int64_t *>(test_data[batch][1].data.data()) +
element_in_batch,
1, static_cast<int64_t *>(labels.data.data()) + i);
}
auto warmup_data = std::make_shared<std::vector<PaddleTensor>>(2);
(*warmup_data)[0] = std::move(images);
(*warmup_data)[1] = std::move(labels);
return warmup_data;
}
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs,
int32_t batch_size = FLAGS_batch_size) {
std::ifstream file(FLAGS_infer_data, std::ios::binary);
if (!file) {
FAIL() << "Couldn't open file: " << FLAGS_infer_data;
}
int64_t total_images{0};
file.read(reinterpret_cast<char *>(&total_images), sizeof(total_images));
LOG(INFO) << "Total images in file: " << total_images;
std::vector<int> image_batch_shape{batch_size, 3, 224, 224};
std::vector<int> label_batch_shape{batch_size, 1};
auto labels_offset_in_file =
static_cast<size_t>(file.tellg()) +
sizeof(float) * total_images *
std::accumulate(image_batch_shape.begin() + 1,
image_batch_shape.end(), 1, std::multiplies<int>());
TensorReader<float> image_reader(file, 0, image_batch_shape, "input");
TensorReader<int64_t> label_reader(file, labels_offset_in_file,
label_batch_shape, "label");
auto iterations = total_images / batch_size;
if (FLAGS_iterations > 0 && FLAGS_iterations < iterations)
iterations = FLAGS_iterations;
for (auto i = 0; i < iterations; i++) {
auto images = image_reader.NextBatch();
auto labels = label_reader.NextBatch();
inputs->emplace_back(
std::vector<PaddleTensor>{std::move(images), std::move(labels)});
}
}
TEST(Analyzer_int8_resnet50, quantization) {
AnalysisConfig cfg;
SetConfig(&cfg);
AnalysisConfig q_cfg;
SetConfig(&q_cfg);
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all, 100);
std::shared_ptr<std::vector<PaddleTensor>> warmup_data =
GetWarmupData(input_slots_all, 100);
q_cfg.EnableMkldnnQuantizer();
q_cfg.mkldnn_quantizer_config()->SetWarmupData(warmup_data);
q_cfg.mkldnn_quantizer_config()->SetWarmupBatchSize(100);
CompareQuantizedAndAnalysis(
reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
reinterpret_cast<const PaddlePredictor::Config *>(&q_cfg),
input_slots_all);
}
TEST(Analyzer_int8_resnet50, profile) {
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
std::shared_ptr<std::vector<PaddleTensor>> warmup_data =
GetWarmupData(input_slots_all, 100);
cfg.EnableMkldnnQuantizer();
cfg.mkldnn_quantizer_config()->SetWarmupData(warmup_data);
cfg.mkldnn_quantizer_config()->SetWarmupBatchSize(100);
std::vector<PaddleTensor> outputs;
TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
input_slots_all, &outputs, FLAGS_num_threads);
}
} // namespace analysis
} // namespace inference
} // namespace paddle
...@@ -50,6 +50,7 @@ DEFINE_bool(use_analysis, true, ...@@ -50,6 +50,7 @@ DEFINE_bool(use_analysis, true,
DEFINE_bool(record_benchmark, false, DEFINE_bool(record_benchmark, false,
"Record benchmark after profiling the model"); "Record benchmark after profiling the model");
DEFINE_double(accuracy, 1e-3, "Result Accuracy."); DEFINE_double(accuracy, 1e-3, "Result Accuracy.");
DEFINE_double(quantized_accuracy, 1e-2, "Result Quantized Accuracy.");
DEFINE_bool(zero_copy, false, "Use ZeroCopy to speedup Feed/Fetch."); DEFINE_bool(zero_copy, false, "Use ZeroCopy to speedup Feed/Fetch.");
DECLARE_bool(profile); DECLARE_bool(profile);
...@@ -58,6 +59,19 @@ DECLARE_int32(paddle_num_threads); ...@@ -58,6 +59,19 @@ DECLARE_int32(paddle_num_threads);
namespace paddle { namespace paddle {
namespace inference { namespace inference {
template <typename T>
constexpr paddle::PaddleDType GetPaddleDType();
template <>
constexpr paddle::PaddleDType GetPaddleDType<int64_t>() {
return paddle::PaddleDType::INT64;
}
template <>
constexpr paddle::PaddleDType GetPaddleDType<float>() {
return paddle::PaddleDType::FLOAT32;
}
void PrintConfig(const PaddlePredictor::Config *config, bool use_analysis) { void PrintConfig(const PaddlePredictor::Config *config, bool use_analysis) {
const auto *analysis_config = const auto *analysis_config =
reinterpret_cast<const AnalysisConfig *>(config); reinterpret_cast<const AnalysisConfig *>(config);
...@@ -392,6 +406,32 @@ void TestPrediction(const PaddlePredictor::Config *config, ...@@ -392,6 +406,32 @@ void TestPrediction(const PaddlePredictor::Config *config,
} }
} }
void CompareTopAccuracy(const std::vector<PaddleTensor> &output_slots1,
const std::vector<PaddleTensor> &output_slots2) {
// first output: avg_cost
if (output_slots1.size() == 0 || output_slots2.size() == 0)
throw std::invalid_argument(
"CompareTopAccuracy: output_slots vector is empty.");
PADDLE_ENFORCE(output_slots1.size() >= 2UL);
PADDLE_ENFORCE(output_slots2.size() >= 2UL);
// second output: acc_top1
if (output_slots1[1].lod.size() > 0 || output_slots2[1].lod.size() > 0)
throw std::invalid_argument(
"CompareTopAccuracy: top1 accuracy output has nonempty LoD.");
if (output_slots1[1].dtype != paddle::PaddleDType::FLOAT32 ||
output_slots2[1].dtype != paddle::PaddleDType::FLOAT32)
throw std::invalid_argument(
"CompareTopAccuracy: top1 accuracy output is of a wrong type.");
float *top1_quantized = static_cast<float *>(output_slots1[1].data.data());
float *top1_reference = static_cast<float *>(output_slots2[1].data.data());
LOG(INFO) << "top1 INT8 accuracy: " << *top1_quantized;
LOG(INFO) << "top1 FP32 accuracy: " << *top1_reference;
LOG(INFO) << "Accepted accuracy drop threshold: " << FLAGS_quantized_accuracy;
CHECK_LE(std::abs(*top1_quantized - *top1_reference),
FLAGS_quantized_accuracy);
}
void CompareDeterministic( void CompareDeterministic(
const PaddlePredictor::Config *config, const PaddlePredictor::Config *config,
const std::vector<std::vector<PaddleTensor>> &inputs) { const std::vector<std::vector<PaddleTensor>> &inputs) {
...@@ -421,6 +461,17 @@ void CompareNativeAndAnalysis( ...@@ -421,6 +461,17 @@ void CompareNativeAndAnalysis(
CompareResult(analysis_outputs, native_outputs); CompareResult(analysis_outputs, native_outputs);
} }
void CompareQuantizedAndAnalysis(
const PaddlePredictor::Config *config,
const PaddlePredictor::Config *qconfig,
const std::vector<std::vector<PaddleTensor>> &inputs) {
PrintConfig(config, true);
std::vector<PaddleTensor> analysis_outputs, quantized_outputs;
TestOneThreadPrediction(config, inputs, &analysis_outputs, true);
TestOneThreadPrediction(qconfig, inputs, &quantized_outputs, true);
CompareTopAccuracy(quantized_outputs, analysis_outputs);
}
void CompareNativeAndAnalysis( void CompareNativeAndAnalysis(
PaddlePredictor *native_pred, PaddlePredictor *analysis_pred, PaddlePredictor *native_pred, PaddlePredictor *analysis_pred,
const std::vector<std::vector<PaddleTensor>> &inputs) { const std::vector<std::vector<PaddleTensor>> &inputs) {
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册