未验证 提交 fd8ec69d 编写于 作者: C ccrrong 提交者: GitHub

remove eye (#48127)

上级 25ffe9c2
...@@ -68,7 +68,6 @@ __all__ = [ ...@@ -68,7 +68,6 @@ __all__ = [
'zeros_like', 'zeros_like',
'ones_like', 'ones_like',
'diag', 'diag',
'eye',
'triu', 'triu',
] ]
...@@ -1787,113 +1786,6 @@ def diag(diagonal): ...@@ -1787,113 +1786,6 @@ def diag(diagonal):
return out return out
def eye(
num_rows, num_columns=None, batch_shape=None, dtype='float32', name=None
):
"""
This function constructs a or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere.
Args:
num_rows(int): the number of rows in each batch tensor.
num_columns(int, optional): the number of columns in each batch tensor.
If None, default: num_rows.
batch_shape(list, optional): If provided, the returned tensor will have a leading
batch size of this shape, the data type of ``batch_shape`` is int. Default is None.
dtype(np.dtype|str, optional): The data type of the returned tensor.
It should be int32, int64, float16, float32, float64, default is 'float32'.
name(str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
Returns:
Tensor: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
Examples:
.. code-block:: python
import paddle.fluid as fluid
data = fluid.layers.eye(3, dtype='int32')
# [[1, 0, 0]
# [0, 1, 0]
# [0, 0, 1]]
data = fluid.layers.eye(2, 3, dtype='int32')
# [[1, 0, 0]
# [0, 1, 0]]
data = fluid.layers.eye(2, batch_shape=[3])
# Construct a batch of 3 identity tensors, each 2 x 2.
# data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.
"""
def _check_attr(attr, message):
if isinstance(attr, ((Variable, core.VarBase, core.eager.Tensor))):
assert len(attr.shape) == 1 and attr.shape[0] in [1, -1]
elif not isinstance(attr, int) or attr < 0:
raise TypeError("{} should be a non-negative int.".format(message))
_check_attr(num_rows, "num_rows")
if not isinstance(dtype, core.VarDesc.VarType):
dtype = convert_np_dtype_to_dtype_(dtype)
if num_columns is not None:
_check_attr(num_columns, "num_columns")
else:
num_columns = num_rows
if in_dygraph_mode():
out = _C_ops.eye(
num_rows, num_columns, dtype, _current_expected_place()
)
elif _in_legacy_dygraph():
out = _legacy_C_ops.eye(
'dtype', dtype, 'num_rows', num_rows, 'num_columns', num_columns
)
else:
helper = LayerHelper("eye", **locals())
check_dtype(
dtype,
'dtype',
['float16', 'float32', 'float64', 'int32', 'int64'],
'eye',
)
out = helper.create_variable_for_type_inference(dtype=dtype)
helper.append_op(
type='eye',
inputs={},
outputs={'Out': [out]},
attrs={
'num_rows': num_rows,
'num_columns': num_columns,
'dtype': dtype,
},
stop_gradient=True,
)
if batch_shape is not None:
re_shape = [1] * len(batch_shape)
re_shape = re_shape + [num_rows, num_columns]
expand_times = batch_shape + [1, 1]
if _non_static_mode():
out, _ = _legacy_C_ops.reshape2(out, None, 'shape', re_shape)
return _legacy_C_ops.expand(out, None, 'expand_times', expand_times)
if not isinstance(batch_shape, list):
raise TypeError("batch_shape should be a list")
for batch_val in batch_shape:
if batch_val <= 0:
raise TypeError("batch_shape should be a positive int list")
from .nn import expand
from paddle import reshape
out = reshape(x=out, shape=re_shape)
out = expand(x=out, expand_times=expand_times)
out.stop_gradient = True
return out
def ones_like(x, out=None): def ones_like(x, out=None):
""" """
**ones_like** **ones_like**
......
...@@ -139,39 +139,6 @@ class API_TestTensorEye(unittest.TestCase): ...@@ -139,39 +139,6 @@ class API_TestTensorEye(unittest.TestCase):
paddle.enable_static() paddle.enable_static()
self.assertEqual((out.numpy() == expected_result).all(), True) self.assertEqual((out.numpy() == expected_result).all(), True)
paddle.disable_static(paddle.NPUPlace(0))
batch_shape = [2]
out = fluid.layers.eye(10, 10, dtype="int32", batch_shape=batch_shape)
result = np.eye(10, dtype="int32")
expected_result = []
for index in reversed(batch_shape):
tmp_result = []
for i in range(index):
tmp_result.append(result)
result = tmp_result
expected_result = np.stack(result, axis=0)
paddle.enable_static()
self.assertEqual(
out.numpy().shape == np.array(expected_result).shape, True
)
self.assertEqual((out.numpy() == expected_result).all(), True)
paddle.disable_static(paddle.NPUPlace(0))
batch_shape = [3, 2]
out = fluid.layers.eye(10, 10, dtype="int32", batch_shape=batch_shape)
result = np.eye(10, dtype="int32")
expected_result = []
for index in reversed(batch_shape):
tmp_result = []
for i in range(index):
tmp_result.append(result)
result = tmp_result
expected_result = np.stack(result, axis=0)
paddle.enable_static()
self.assertEqual(
out.numpy().shape == np.array(expected_result).shape, True
)
self.assertEqual((out.numpy() == expected_result).all(), True)
def test_errors(self): def test_errors(self):
with paddle.static.program_guard(paddle.static.Program()): with paddle.static.program_guard(paddle.static.Program()):
......
...@@ -109,40 +109,6 @@ class API_TestTensorEye(unittest.TestCase): ...@@ -109,40 +109,6 @@ class API_TestTensorEye(unittest.TestCase):
paddle.enable_static() paddle.enable_static()
self.assertEqual((out.numpy() == expected_result).all(), True) self.assertEqual((out.numpy() == expected_result).all(), True)
paddle.disable_static()
batch_shape = [2]
out = fluid.layers.eye(10, 10, dtype="int64", batch_shape=batch_shape)
result = np.eye(10, dtype="int64")
expected_result = []
for index in reversed(batch_shape):
tmp_result = []
for i in range(index):
tmp_result.append(result)
result = tmp_result
expected_result = np.stack(result, axis=0)
paddle.enable_static()
self.assertEqual(
out.numpy().shape == np.array(expected_result).shape, True
)
self.assertEqual((out.numpy() == expected_result).all(), True)
paddle.disable_static()
batch_shape = [3, 2]
out = fluid.layers.eye(10, 10, dtype="int64", batch_shape=batch_shape)
result = np.eye(10, dtype="int64")
expected_result = []
for index in reversed(batch_shape):
tmp_result = []
for i in range(index):
tmp_result.append(result)
result = tmp_result
expected_result = np.stack(result, axis=0)
paddle.enable_static()
self.assertEqual(
out.numpy().shape == np.array(expected_result).shape, True
)
self.assertEqual((out.numpy() == expected_result).all(), True)
def test_errors(self): def test_errors(self):
with paddle.static.program_guard(paddle.static.Program()): with paddle.static.program_guard(paddle.static.Program()):
...@@ -212,18 +178,6 @@ class TestEyeRowsCol(UnittestBase): ...@@ -212,18 +178,6 @@ class TestEyeRowsCol(UnittestBase):
paddle.eye(-1) paddle.eye(-1)
class TestEyeRowsCol2(TestEyeRowsCol):
def call_func(self, x):
rows = paddle.assign(3)
cols = paddle.assign(10)
out = paddle.fluid.layers.eye(rows, cols)
return out
def test_error(self):
with self.assertRaises(TypeError):
paddle.fluid.layers.eye(-1)
if __name__ == "__main__": if __name__ == "__main__":
paddle.enable_static() paddle.enable_static()
unittest.main() unittest.main()
...@@ -2407,70 +2407,6 @@ class TestLayer(LayerTest): ...@@ -2407,70 +2407,6 @@ class TestLayer(LayerTest):
conv3d1.bias.numpy(), conv3d2.bias.numpy() conv3d1.bias.numpy(), conv3d2.bias.numpy()
) )
def test_eye_op(self):
np_eye = np.eye(3, 2)
array_rlt1 = [np_eye for _ in range(3)]
stack_rlt1 = np.stack(array_rlt1, axis=0)
array_rlt2 = [stack_rlt1 for _ in range(4)]
stack_rlt2 = np.stack(array_rlt2, axis=0)
with self.dynamic_graph():
with _test_eager_guard():
eager_eye_tensor = layers.eye(num_rows=3, num_columns=2)
eager_eye_tensor_rlt1 = layers.eye(
num_rows=3, num_columns=2, batch_shape=[3]
)
eager_eye_tensor_rlt2 = layers.eye(
num_rows=3, num_columns=2, batch_shape=[4, 3]
)
eager_diag_tensor = layers.eye(20)
eager_eye_tensor_value = eager_eye_tensor.numpy()
eager_eye_tensor_rlt1_value = eager_eye_tensor_rlt1.numpy()
eager_eye_tensor_rlt2_value = eager_eye_tensor_rlt2.numpy()
eager_diag_tensor_value = eager_diag_tensor.numpy()
eye_tensor = layers.eye(num_rows=3, num_columns=2)
eye_tensor_rlt1 = layers.eye(
num_rows=3, num_columns=2, batch_shape=[3]
)
eye_tensor_rlt2 = layers.eye(
num_rows=3, num_columns=2, batch_shape=[4, 3]
)
diag_tensor = layers.eye(20)
eye_tensor_value = eye_tensor.numpy()
eye_tensor_rlt1_value = eye_tensor_rlt1.numpy()
eye_tensor_rlt2_value = eye_tensor_rlt2.numpy()
diag_tensor_value = diag_tensor.numpy()
np.testing.assert_allclose(eager_eye_tensor_value, np_eye, rtol=1e-05)
np.testing.assert_allclose(
eager_eye_tensor_rlt1_value, stack_rlt1, rtol=1e-05
)
np.testing.assert_allclose(
eager_eye_tensor_rlt2_value, stack_rlt2, rtol=1e-05
)
np.testing.assert_allclose(
eager_diag_tensor_value, np.eye(20), rtol=1e-05
)
np.testing.assert_allclose(eye_tensor_value, np_eye, rtol=1e-05)
np.testing.assert_allclose(
eye_tensor_rlt1_value, stack_rlt1, rtol=1e-05
)
np.testing.assert_allclose(
eye_tensor_rlt2_value, stack_rlt2, rtol=1e-05
)
np.testing.assert_allclose(diag_tensor_value, np.eye(20), rtol=1e-05)
with self.assertRaises(TypeError):
layers.eye(num_rows=3.1)
with self.assertRaises(TypeError):
layers.eye(num_rows=3, num_columns=2.2)
with self.assertRaises(TypeError):
layers.eye(num_rows=3, batch_shape=2)
with self.assertRaises(TypeError):
layers.eye(num_rows=3, batch_shape=[-1])
def func_while_loop(self): def func_while_loop(self):
with self.static_graph(): with self.static_graph():
i = layers.fill_constant(shape=[1], dtype='int64', value=0) i = layers.fill_constant(shape=[1], dtype='int64', value=0)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册