未验证 提交 fd66d762 编写于 作者: C ceci3 提交者: GitHub

add weight_norm & remove_weight_norm (#26131)

* add weight_norm, test=develop
上级 facc0a10
...@@ -204,6 +204,9 @@ class WeightNormParamAttr(ParamAttr): ...@@ -204,6 +204,9 @@ class WeightNormParamAttr(ParamAttr):
""" """
:api_attr: Static Graph :api_attr: Static Graph
Note:
Please use 'paddle.nn.utils.weight_norm' in dygraph mode.
Parameter of weight Norm. Weight Norm is a reparameterization of the weight vectors Parameter of weight Norm. Weight Norm is a reparameterization of the weight vectors
in a neural network that decouples the magnitude of those weight vectors from in a neural network that decouples the magnitude of those weight vectors from
their direction. Weight Norm has been implemented as discussed in this their direction. Weight Norm has been implemented as discussed in this
...@@ -216,6 +219,7 @@ class WeightNormParamAttr(ParamAttr): ...@@ -216,6 +219,7 @@ class WeightNormParamAttr(ParamAttr):
It is recommended to use ``minimize(loss, grad_clip=clip)`` to clip gradient. It is recommended to use ``minimize(loss, grad_clip=clip)`` to clip gradient.
There are three clipping strategies: :ref:`api_fluid_clip_GradientClipByGlobalNorm` , There are three clipping strategies: :ref:`api_fluid_clip_GradientClipByGlobalNorm` ,
:ref:`api_fluid_clip_GradientClipByNorm` , :ref:`api_fluid_clip_GradientClipByValue` . :ref:`api_fluid_clip_GradientClipByNorm` , :ref:`api_fluid_clip_GradientClipByValue` .
Args: Args:
dim(int): Dimension over which to compute the norm. Dim is a non-negative dim(int): Dimension over which to compute the norm. Dim is a non-negative
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy
import collections
from functools import reduce
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.nn.utils import weight_norm, remove_weight_norm
class TestDygraphWeightNorm(unittest.TestCase):
def setUp(self):
self.init_test_case()
self.set_data()
def init_test_case(self):
self.batch_size = 3
self.data_desc = (['x', [2, 3, 3]], )
self.dim = None
def set_data(self):
self.data = collections.OrderedDict()
for desc in self.data_desc:
data_name = desc[0]
data_shape = desc[1]
data_value = numpy.random.random(
size=[self.batch_size] + data_shape).astype('float32')
self.data[data_name] = data_value
def norm_except_dim(self, w, dim=None):
shape = w.shape
ndims = len(shape)
shape_numel = reduce(lambda x, y: x * y, shape)
if dim == -1:
return numpy.linalg.norm(w, axis=None, keepdims=True)
elif dim == 0:
tile_shape = list(w.shape)
tile_shape[0] = 1
w_matrix = numpy.reshape(w, (shape[0], shape_numel // shape[0]))
return numpy.linalg.norm(w_matrix, axis=1, keepdims=True)
elif dim == (ndims - 1):
w_matrix = numpy.reshape(w, (shape_numel // shape[-1], shape[-1]))
return numpy.linalg.norm(w_matrix, axis=0, keepdims=True)
else:
perm = list(range(ndims))
perm_ori = list(range(ndims))
perm[0] = dim
perm[dim] = 0
p_transposed = numpy.transpose(w, perm)
return self.norm_except_dim(p_transposed, 0)
def weight_normalize(self, w, dim=None):
shape = w.shape
ndims = len(shape)
shape_numel = reduce(lambda x, y: x * y, shape)
v = w
g = self.norm_except_dim(w, dim)
g_mul = g
if dim == -1:
v_norm = v / (numpy.linalg.norm(v, axis=None, keepdims=True))
elif dim == 0:
w_matrix = numpy.reshape(w, (shape[0], shape_numel // shape[0]))
v_norm = v / numpy.linalg.norm(w_matrix, axis=1)
v_norm = numpy.reshape(v_norm, shape)
g = numpy.squeeze(g, axis=1)
elif dim == (ndims - 1):
w_matrix = numpy.reshape(w, (shape_numel // shape[-1], shape[-1]))
v_norm = v / numpy.linalg.norm(w_matrix, axis=0, keepdims=True)
v_norm = numpy.reshape(v_norm, shape)
else:
perm = list(range(ndims))
perm[0] = dim
perm[dim] = 0
p_transposed = numpy.transpose(v, perm)
transposed_shape = p_transposed.shape
transposed_shape_numel = reduce(lambda x, y: x * y,
transposed_shape)
p_matrix = numpy.reshape(
p_transposed, (p_transposed.shape[0],
transposed_shape_numel // p_transposed.shape[0]))
v_norm = v / numpy.expand_dims(
numpy.expand_dims(
numpy.linalg.norm(
p_matrix, axis=1, keepdims=True), axis=0),
axis=(ndims - 1))
v_norm = numpy.reshape(v_norm, transposed_shape)
v_norm = numpy.transpose(v_norm, perm)
g = numpy.squeeze(g, axis=1)
if dim == 1:
eaxis = 2
elif dim == 2:
eaxis = 1
g_mul = numpy.expand_dims(
numpy.expand_dims(
numpy.expand_dims(
g, axis=0), axis=eaxis),
axis=(ndims - 1))
w = g_mul * v_norm
return g, v
def test_check_output(self):
fluid.enable_imperative()
linear = paddle.nn.Conv2D(2, 3, 3)
before_weight = linear.weight.numpy()
if self.dim == None:
self.dim = -1
wn = weight_norm(linear, dim=self.dim)
outputs = []
for name, data in self.data.items():
output = linear(fluid.dygraph.to_variable(data))
outputs.append(output.numpy())
after_weight = linear.weight
self.actual_outputs = [linear.weight_g.numpy(), linear.weight_v.numpy()]
expect_output = self.weight_normalize(before_weight, self.dim)
for expect, actual in zip(expect_output, self.actual_outputs):
self.assertTrue(
numpy.allclose(
numpy.array(actual), expect, atol=0.001))
class TestDygraphWeightNormCase1(TestDygraphWeightNorm):
def init_test_case(self):
self.batch_size = 3
self.data_desc = (['x', [2, 3, 3]], )
self.dim = 0
class TestDygraphWeightNormCase2(TestDygraphWeightNorm):
def init_test_case(self):
self.batch_size = 3
self.data_desc = (['x', [2, 3, 3]], )
self.dim = 1
class TestDygraphWeightNormCase3(TestDygraphWeightNorm):
def init_test_case(self):
self.batch_size = 3
self.data_desc = (['x', [2, 3, 3]], )
self.dim = 3
class TestDygraphRemoveWeightNorm(unittest.TestCase):
def setUp(self):
self.init_test_case()
def init_test_case(self):
self.batch_size = 3
self.data_desc = (['x', [2, 3, 3]], )
self.dim = None
def test_check_output(self):
fluid.enable_imperative()
linear = paddle.nn.Conv2D(2, 3, 3)
before_weight = linear.weight
wn = weight_norm(linear, dim=self.dim)
rwn = remove_weight_norm(linear)
after_weight = linear.weight
self.assertTrue(
numpy.allclose(
before_weight.numpy(), after_weight.numpy(), atol=0.001))
if __name__ == '__main__':
unittest.main()
...@@ -18,6 +18,7 @@ ...@@ -18,6 +18,7 @@
from .layer import norm from .layer import norm
from .functional import extension from .functional import extension
from .layer import common from .layer import common
from .utils import weight_norm_hook
from . import initializer from . import initializer
...@@ -25,6 +26,7 @@ __all__ = [] ...@@ -25,6 +26,7 @@ __all__ = []
__all__ += norm.__all__ __all__ += norm.__all__
__all__ += extension.__all__ __all__ += extension.__all__
__all__ += common.__all__ __all__ += common.__all__
__all__ += weight_norm_hook.__all__
# TODO: define alias in nn directory # TODO: define alias in nn directory
# from .clip import ErrorClipByValue #DEFINE_ALIAS # from .clip import ErrorClipByValue #DEFINE_ALIAS
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from . import weight_norm_hook
from .weight_norm_hook import weight_norm, remove_weight_norm
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from ... import fluid
from ...fluid import dygraph
from ...fluid import layers as F
from ...fluid.layer_helper import LayerHelper
from ...fluid.data_feeder import check_variable_and_dtype
from ...tensor.math import multiply
__all__ = ['weight_norm', 'remove_weight_norm']
def l2_norm(x, axis, epsilon=1e-12, name=None):
if len(x.shape) == 1:
axis = 0
check_variable_and_dtype(x, "X", ("float32", "float64"), "norm")
helper = LayerHelper("l2_normalize", **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
norm = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type="norm",
inputs={"X": x},
outputs={"Out": out,
"Norm": norm},
attrs={
"axis": 1 if axis is None else axis,
"epsilon": epsilon,
})
return F.squeeze(norm, axes=[axis])
def norm_except_dim(p, dim):
shape = p.shape
ndims = len(shape)
if dim == -1:
return F.sqrt(F.reduce_sum(F.square(p)) + 1e-12)
elif dim == 0:
p_matrix = F.reshape(p, (shape[0], -1))
return l2_norm(p_matrix, axis=1)
elif dim == ndims - 1:
p_matrix = F.reshape(p, (-1, shape[-1]))
return l2_norm(p_matrix, axis=0)
else:
perm = list(range(ndims))
perm[0] = dim
perm[dim] = 0
p_transposed = F.transpose(p, perm)
return norm_except_dim(p_transposed, 0)
def _weight_norm(v, g, dim):
shape = v.shape
ndims = len(shape)
if dim == -1:
v_normalized = v / (F.sqrt(F.reduce_sum(F.square(v))) + 1e-12)
elif dim == 0:
p_matrix = F.reshape(v, (shape[0], -1))
v_normalized = F.l2_normalize(p_matrix, axis=1)
v_normalized = F.reshape(v_normalized, shape)
elif dim == ndims - 1:
p_matrix = F.reshape(v, (-1, shape[-1]))
v_normalized = F.l2_normalize(p_matrix, axis=0)
v_normalized = F.reshape(v_normalized, shape)
else:
perm = list(range(ndims))
perm[0] = dim
perm[dim] = 0
p_transposed = F.transpose(v, perm)
transposed_shape = p_transposed.shape
p_matrix = F.reshape(p_transposed, (p_transposed.shape[0], -1))
v_normalized = F.l2_normalize(p_matrix, axis=1)
v_normalized = F.reshape(v_normalized, transposed_shape)
v_normalized = F.transpose(v_normalized, perm)
weight = multiply(v_normalized, g, axis=dim if dim is not None else -1)
return weight
class WeightNorm(object):
def __init__(self, name, dim):
if dim is None:
dim = -1
self.name = name
self.dim = dim
def compute_weight(self, layer):
g = getattr(layer, self.name + '_g')
v = getattr(layer, self.name + '_v')
return _weight_norm(v, g, self.dim)
@staticmethod
def apply(layer, name, dim):
for k, hook in layer._forward_pre_hooks.items():
if isinstance(hook, WeightNorm) and hook.name == name:
raise RuntimeError("Cannot register two weight_norm hooks on "
"the same parameter {}".format(name))
if dim is None:
dim = -1
fn = WeightNorm(name, dim)
w = getattr(layer, name)
del layer._parameters[name]
g_var = norm_except_dim(w, dim)
v = layer.create_parameter(w.shape, dtype=w.dtype)
layer.add_parameter(name + "_v", v)
g = layer.create_parameter(g_var.shape, dtype=g_var.dtype)
layer.add_parameter(name + '_g', g)
with dygraph.no_grad():
F.assign(w, v)
F.assign(g_var, g)
setattr(layer, name, fn.compute_weight(layer))
layer.register_forward_pre_hook(fn)
return fn
def remove(self, layer):
w_var = self.compute_weight(layer)
delattr(layer, self.name)
del layer._parameters[self.name + '_g']
del layer._parameters[self.name + '_v']
w = layer.create_parameter(w_var.shape, dtype=w_var.dtype)
layer.add_parameter(self.name, w)
with dygraph.no_grad():
F.assign(w_var, w)
def __call__(self, layer, inputs):
setattr(layer, self.name, self.compute_weight(layer))
def weight_norm(layer, name='weight', dim=0):
"""
This weight_norm layer applies weight normalization to a parameter according to the
following formula:
.. math::
\mathbf{w} = g \dfrac{v}{\|v\|}
Weight normalization is a reparameterization of the weight vectors in a neural network that
decouples the magnitude of those weight vectors from their direction. Weight normalization
replaces the parameter specified by `name`(eg: 'weight') with two parameters: one parameter
specifying the magnitude (eg: 'weight_g') and one parameter specifying the direction
(eg: 'weight_v'). Weight normalization has been implemented as discussed in this paper:
`Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks
<https://arxiv.org/pdf/1602.07868.pdf>`_.
Parameters:
layer(Layer): Layer of paddle, which has weight.
name(str, optional): Name of the weight parameter. Default: 'weight'.
dim(int, optional): Dimension over which to compute the norm. Dim is a non-negative number
which is less than the rank of weight Tensor. For Example, dim can be chosen from 0,
1, 2, 3 for convolution whose weight shape is [cout, cin, kh, kw] and rank is 4.
If dim is set to None, meaning that all elements will be normalized. Default: 0.
Returns:
Origin layer with weight norm hook.
Examples:
.. code-block:: python
import numpy as np
from paddle.nn import Conv2D
from paddle.nn.utils import weight_norm
x = np.array([[[[0.3, 0.4], [0.3, 0.07]], [[0.83, 0.37], [0.18, 0.93]]]]).astype('float32')
paddle.disable_static()
conv = Conv2D(3, 5, 3)
wn = weight_norm(conv)
print(conv.weight_g.shape)
# [5]
print(conv.weight_v.shape)
# [5, 3, 3, 3]
"""
WeightNorm.apply(layer, name, dim)
return layer
def remove_weight_norm(layer, name='weight'):
"""
remove weight normalization from layer.
Parameters:
layer(Layer): Layer of paddle, which has weight.
name(str, optional): Name of the weight parameter. Default: 'weight'.
Returns:
Origin layer without weight norm
Examples:
.. code-block:: python
import paddle
from paddle.nn import Conv2D
from paddle.nn.utils import weight_norm, remove_weight_norm
paddle.disable_static()
conv = Conv2D(3, 5, 3)
wn = weight_norm(conv)
remove_weight_norm(conv)
print(conv.weight_g)
# AttributeError: 'Conv2D' object has no attribute 'weight_g'
"""
for k, hook in layer._forward_pre_hooks.items():
if isinstance(hook, WeightNorm) and hook.name == name:
hook.remove(layer)
del layer._forward_pre_hooks[k]
return layer
raise ValueError("weight_norm of '{}' not found in {}".format(name, layer))
...@@ -201,6 +201,7 @@ packages=['paddle', ...@@ -201,6 +201,7 @@ packages=['paddle',
'paddle.nn.functional', 'paddle.nn.functional',
'paddle.nn.layer', 'paddle.nn.layer',
'paddle.nn.initializer', 'paddle.nn.initializer',
'paddle.nn.utils',
'paddle.metric', 'paddle.metric',
'paddle.static', 'paddle.static',
'paddle.static.nn', 'paddle.static.nn',
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册