Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
fd66d762
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
fd66d762
编写于
8月 20, 2020
作者:
C
ceci3
提交者:
GitHub
8月 20, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add weight_norm & remove_weight_norm (#26131)
* add weight_norm, test=develop
上级
facc0a10
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
431 addition
and
0 deletion
+431
-0
python/paddle/fluid/param_attr.py
python/paddle/fluid/param_attr.py
+4
-0
python/paddle/fluid/tests/unittests/test_dygraph_weight_norm.py
.../paddle/fluid/tests/unittests/test_dygraph_weight_norm.py
+183
-0
python/paddle/nn/__init__.py
python/paddle/nn/__init__.py
+2
-0
python/paddle/nn/utils/__init__.py
python/paddle/nn/utils/__init__.py
+16
-0
python/paddle/nn/utils/weight_norm_hook.py
python/paddle/nn/utils/weight_norm_hook.py
+225
-0
python/setup.py.in
python/setup.py.in
+1
-0
未找到文件。
python/paddle/fluid/param_attr.py
浏览文件 @
fd66d762
...
@@ -204,6 +204,9 @@ class WeightNormParamAttr(ParamAttr):
...
@@ -204,6 +204,9 @@ class WeightNormParamAttr(ParamAttr):
"""
"""
:api_attr: Static Graph
:api_attr: Static Graph
Note:
Please use 'paddle.nn.utils.weight_norm' in dygraph mode.
Parameter of weight Norm. Weight Norm is a reparameterization of the weight vectors
Parameter of weight Norm. Weight Norm is a reparameterization of the weight vectors
in a neural network that decouples the magnitude of those weight vectors from
in a neural network that decouples the magnitude of those weight vectors from
their direction. Weight Norm has been implemented as discussed in this
their direction. Weight Norm has been implemented as discussed in this
...
@@ -216,6 +219,7 @@ class WeightNormParamAttr(ParamAttr):
...
@@ -216,6 +219,7 @@ class WeightNormParamAttr(ParamAttr):
It is recommended to use ``minimize(loss, grad_clip=clip)`` to clip gradient.
It is recommended to use ``minimize(loss, grad_clip=clip)`` to clip gradient.
There are three clipping strategies: :ref:`api_fluid_clip_GradientClipByGlobalNorm` ,
There are three clipping strategies: :ref:`api_fluid_clip_GradientClipByGlobalNorm` ,
:ref:`api_fluid_clip_GradientClipByNorm` , :ref:`api_fluid_clip_GradientClipByValue` .
:ref:`api_fluid_clip_GradientClipByNorm` , :ref:`api_fluid_clip_GradientClipByValue` .
Args:
Args:
dim(int): Dimension over which to compute the norm. Dim is a non-negative
dim(int): Dimension over which to compute the norm. Dim is a non-negative
...
...
python/paddle/fluid/tests/unittests/test_dygraph_weight_norm.py
0 → 100644
浏览文件 @
fd66d762
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
import
collections
from
functools
import
reduce
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.nn.utils
import
weight_norm
,
remove_weight_norm
class
TestDygraphWeightNorm
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
init_test_case
()
self
.
set_data
()
def
init_test_case
(
self
):
self
.
batch_size
=
3
self
.
data_desc
=
([
'x'
,
[
2
,
3
,
3
]],
)
self
.
dim
=
None
def
set_data
(
self
):
self
.
data
=
collections
.
OrderedDict
()
for
desc
in
self
.
data_desc
:
data_name
=
desc
[
0
]
data_shape
=
desc
[
1
]
data_value
=
numpy
.
random
.
random
(
size
=
[
self
.
batch_size
]
+
data_shape
).
astype
(
'float32'
)
self
.
data
[
data_name
]
=
data_value
def
norm_except_dim
(
self
,
w
,
dim
=
None
):
shape
=
w
.
shape
ndims
=
len
(
shape
)
shape_numel
=
reduce
(
lambda
x
,
y
:
x
*
y
,
shape
)
if
dim
==
-
1
:
return
numpy
.
linalg
.
norm
(
w
,
axis
=
None
,
keepdims
=
True
)
elif
dim
==
0
:
tile_shape
=
list
(
w
.
shape
)
tile_shape
[
0
]
=
1
w_matrix
=
numpy
.
reshape
(
w
,
(
shape
[
0
],
shape_numel
//
shape
[
0
]))
return
numpy
.
linalg
.
norm
(
w_matrix
,
axis
=
1
,
keepdims
=
True
)
elif
dim
==
(
ndims
-
1
):
w_matrix
=
numpy
.
reshape
(
w
,
(
shape_numel
//
shape
[
-
1
],
shape
[
-
1
]))
return
numpy
.
linalg
.
norm
(
w_matrix
,
axis
=
0
,
keepdims
=
True
)
else
:
perm
=
list
(
range
(
ndims
))
perm_ori
=
list
(
range
(
ndims
))
perm
[
0
]
=
dim
perm
[
dim
]
=
0
p_transposed
=
numpy
.
transpose
(
w
,
perm
)
return
self
.
norm_except_dim
(
p_transposed
,
0
)
def
weight_normalize
(
self
,
w
,
dim
=
None
):
shape
=
w
.
shape
ndims
=
len
(
shape
)
shape_numel
=
reduce
(
lambda
x
,
y
:
x
*
y
,
shape
)
v
=
w
g
=
self
.
norm_except_dim
(
w
,
dim
)
g_mul
=
g
if
dim
==
-
1
:
v_norm
=
v
/
(
numpy
.
linalg
.
norm
(
v
,
axis
=
None
,
keepdims
=
True
))
elif
dim
==
0
:
w_matrix
=
numpy
.
reshape
(
w
,
(
shape
[
0
],
shape_numel
//
shape
[
0
]))
v_norm
=
v
/
numpy
.
linalg
.
norm
(
w_matrix
,
axis
=
1
)
v_norm
=
numpy
.
reshape
(
v_norm
,
shape
)
g
=
numpy
.
squeeze
(
g
,
axis
=
1
)
elif
dim
==
(
ndims
-
1
):
w_matrix
=
numpy
.
reshape
(
w
,
(
shape_numel
//
shape
[
-
1
],
shape
[
-
1
]))
v_norm
=
v
/
numpy
.
linalg
.
norm
(
w_matrix
,
axis
=
0
,
keepdims
=
True
)
v_norm
=
numpy
.
reshape
(
v_norm
,
shape
)
else
:
perm
=
list
(
range
(
ndims
))
perm
[
0
]
=
dim
perm
[
dim
]
=
0
p_transposed
=
numpy
.
transpose
(
v
,
perm
)
transposed_shape
=
p_transposed
.
shape
transposed_shape_numel
=
reduce
(
lambda
x
,
y
:
x
*
y
,
transposed_shape
)
p_matrix
=
numpy
.
reshape
(
p_transposed
,
(
p_transposed
.
shape
[
0
],
transposed_shape_numel
//
p_transposed
.
shape
[
0
]))
v_norm
=
v
/
numpy
.
expand_dims
(
numpy
.
expand_dims
(
numpy
.
linalg
.
norm
(
p_matrix
,
axis
=
1
,
keepdims
=
True
),
axis
=
0
),
axis
=
(
ndims
-
1
))
v_norm
=
numpy
.
reshape
(
v_norm
,
transposed_shape
)
v_norm
=
numpy
.
transpose
(
v_norm
,
perm
)
g
=
numpy
.
squeeze
(
g
,
axis
=
1
)
if
dim
==
1
:
eaxis
=
2
elif
dim
==
2
:
eaxis
=
1
g_mul
=
numpy
.
expand_dims
(
numpy
.
expand_dims
(
numpy
.
expand_dims
(
g
,
axis
=
0
),
axis
=
eaxis
),
axis
=
(
ndims
-
1
))
w
=
g_mul
*
v_norm
return
g
,
v
def
test_check_output
(
self
):
fluid
.
enable_imperative
()
linear
=
paddle
.
nn
.
Conv2D
(
2
,
3
,
3
)
before_weight
=
linear
.
weight
.
numpy
()
if
self
.
dim
==
None
:
self
.
dim
=
-
1
wn
=
weight_norm
(
linear
,
dim
=
self
.
dim
)
outputs
=
[]
for
name
,
data
in
self
.
data
.
items
():
output
=
linear
(
fluid
.
dygraph
.
to_variable
(
data
))
outputs
.
append
(
output
.
numpy
())
after_weight
=
linear
.
weight
self
.
actual_outputs
=
[
linear
.
weight_g
.
numpy
(),
linear
.
weight_v
.
numpy
()]
expect_output
=
self
.
weight_normalize
(
before_weight
,
self
.
dim
)
for
expect
,
actual
in
zip
(
expect_output
,
self
.
actual_outputs
):
self
.
assertTrue
(
numpy
.
allclose
(
numpy
.
array
(
actual
),
expect
,
atol
=
0.001
))
class
TestDygraphWeightNormCase1
(
TestDygraphWeightNorm
):
def
init_test_case
(
self
):
self
.
batch_size
=
3
self
.
data_desc
=
([
'x'
,
[
2
,
3
,
3
]],
)
self
.
dim
=
0
class
TestDygraphWeightNormCase2
(
TestDygraphWeightNorm
):
def
init_test_case
(
self
):
self
.
batch_size
=
3
self
.
data_desc
=
([
'x'
,
[
2
,
3
,
3
]],
)
self
.
dim
=
1
class
TestDygraphWeightNormCase3
(
TestDygraphWeightNorm
):
def
init_test_case
(
self
):
self
.
batch_size
=
3
self
.
data_desc
=
([
'x'
,
[
2
,
3
,
3
]],
)
self
.
dim
=
3
class
TestDygraphRemoveWeightNorm
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
init_test_case
()
def
init_test_case
(
self
):
self
.
batch_size
=
3
self
.
data_desc
=
([
'x'
,
[
2
,
3
,
3
]],
)
self
.
dim
=
None
def
test_check_output
(
self
):
fluid
.
enable_imperative
()
linear
=
paddle
.
nn
.
Conv2D
(
2
,
3
,
3
)
before_weight
=
linear
.
weight
wn
=
weight_norm
(
linear
,
dim
=
self
.
dim
)
rwn
=
remove_weight_norm
(
linear
)
after_weight
=
linear
.
weight
self
.
assertTrue
(
numpy
.
allclose
(
before_weight
.
numpy
(),
after_weight
.
numpy
(),
atol
=
0.001
))
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/nn/__init__.py
浏览文件 @
fd66d762
...
@@ -18,6 +18,7 @@
...
@@ -18,6 +18,7 @@
from
.layer
import
norm
from
.layer
import
norm
from
.functional
import
extension
from
.functional
import
extension
from
.layer
import
common
from
.layer
import
common
from
.utils
import
weight_norm_hook
from
.
import
initializer
from
.
import
initializer
...
@@ -25,6 +26,7 @@ __all__ = []
...
@@ -25,6 +26,7 @@ __all__ = []
__all__
+=
norm
.
__all__
__all__
+=
norm
.
__all__
__all__
+=
extension
.
__all__
__all__
+=
extension
.
__all__
__all__
+=
common
.
__all__
__all__
+=
common
.
__all__
__all__
+=
weight_norm_hook
.
__all__
# TODO: define alias in nn directory
# TODO: define alias in nn directory
# from .clip import ErrorClipByValue #DEFINE_ALIAS
# from .clip import ErrorClipByValue #DEFINE_ALIAS
...
...
python/paddle/nn/utils/__init__.py
0 → 100644
浏览文件 @
fd66d762
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
.
import
weight_norm_hook
from
.weight_norm_hook
import
weight_norm
,
remove_weight_norm
python/paddle/nn/utils/weight_norm_hook.py
0 → 100644
浏览文件 @
fd66d762
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
from
...
import
fluid
from
...fluid
import
dygraph
from
...fluid
import
layers
as
F
from
...fluid.layer_helper
import
LayerHelper
from
...fluid.data_feeder
import
check_variable_and_dtype
from
...tensor.math
import
multiply
__all__
=
[
'weight_norm'
,
'remove_weight_norm'
]
def
l2_norm
(
x
,
axis
,
epsilon
=
1e-12
,
name
=
None
):
if
len
(
x
.
shape
)
==
1
:
axis
=
0
check_variable_and_dtype
(
x
,
"X"
,
(
"float32"
,
"float64"
),
"norm"
)
helper
=
LayerHelper
(
"l2_normalize"
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
norm
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
"norm"
,
inputs
=
{
"X"
:
x
},
outputs
=
{
"Out"
:
out
,
"Norm"
:
norm
},
attrs
=
{
"axis"
:
1
if
axis
is
None
else
axis
,
"epsilon"
:
epsilon
,
})
return
F
.
squeeze
(
norm
,
axes
=
[
axis
])
def
norm_except_dim
(
p
,
dim
):
shape
=
p
.
shape
ndims
=
len
(
shape
)
if
dim
==
-
1
:
return
F
.
sqrt
(
F
.
reduce_sum
(
F
.
square
(
p
))
+
1e-12
)
elif
dim
==
0
:
p_matrix
=
F
.
reshape
(
p
,
(
shape
[
0
],
-
1
))
return
l2_norm
(
p_matrix
,
axis
=
1
)
elif
dim
==
ndims
-
1
:
p_matrix
=
F
.
reshape
(
p
,
(
-
1
,
shape
[
-
1
]))
return
l2_norm
(
p_matrix
,
axis
=
0
)
else
:
perm
=
list
(
range
(
ndims
))
perm
[
0
]
=
dim
perm
[
dim
]
=
0
p_transposed
=
F
.
transpose
(
p
,
perm
)
return
norm_except_dim
(
p_transposed
,
0
)
def
_weight_norm
(
v
,
g
,
dim
):
shape
=
v
.
shape
ndims
=
len
(
shape
)
if
dim
==
-
1
:
v_normalized
=
v
/
(
F
.
sqrt
(
F
.
reduce_sum
(
F
.
square
(
v
)))
+
1e-12
)
elif
dim
==
0
:
p_matrix
=
F
.
reshape
(
v
,
(
shape
[
0
],
-
1
))
v_normalized
=
F
.
l2_normalize
(
p_matrix
,
axis
=
1
)
v_normalized
=
F
.
reshape
(
v_normalized
,
shape
)
elif
dim
==
ndims
-
1
:
p_matrix
=
F
.
reshape
(
v
,
(
-
1
,
shape
[
-
1
]))
v_normalized
=
F
.
l2_normalize
(
p_matrix
,
axis
=
0
)
v_normalized
=
F
.
reshape
(
v_normalized
,
shape
)
else
:
perm
=
list
(
range
(
ndims
))
perm
[
0
]
=
dim
perm
[
dim
]
=
0
p_transposed
=
F
.
transpose
(
v
,
perm
)
transposed_shape
=
p_transposed
.
shape
p_matrix
=
F
.
reshape
(
p_transposed
,
(
p_transposed
.
shape
[
0
],
-
1
))
v_normalized
=
F
.
l2_normalize
(
p_matrix
,
axis
=
1
)
v_normalized
=
F
.
reshape
(
v_normalized
,
transposed_shape
)
v_normalized
=
F
.
transpose
(
v_normalized
,
perm
)
weight
=
multiply
(
v_normalized
,
g
,
axis
=
dim
if
dim
is
not
None
else
-
1
)
return
weight
class
WeightNorm
(
object
):
def
__init__
(
self
,
name
,
dim
):
if
dim
is
None
:
dim
=
-
1
self
.
name
=
name
self
.
dim
=
dim
def
compute_weight
(
self
,
layer
):
g
=
getattr
(
layer
,
self
.
name
+
'_g'
)
v
=
getattr
(
layer
,
self
.
name
+
'_v'
)
return
_weight_norm
(
v
,
g
,
self
.
dim
)
@
staticmethod
def
apply
(
layer
,
name
,
dim
):
for
k
,
hook
in
layer
.
_forward_pre_hooks
.
items
():
if
isinstance
(
hook
,
WeightNorm
)
and
hook
.
name
==
name
:
raise
RuntimeError
(
"Cannot register two weight_norm hooks on "
"the same parameter {}"
.
format
(
name
))
if
dim
is
None
:
dim
=
-
1
fn
=
WeightNorm
(
name
,
dim
)
w
=
getattr
(
layer
,
name
)
del
layer
.
_parameters
[
name
]
g_var
=
norm_except_dim
(
w
,
dim
)
v
=
layer
.
create_parameter
(
w
.
shape
,
dtype
=
w
.
dtype
)
layer
.
add_parameter
(
name
+
"_v"
,
v
)
g
=
layer
.
create_parameter
(
g_var
.
shape
,
dtype
=
g_var
.
dtype
)
layer
.
add_parameter
(
name
+
'_g'
,
g
)
with
dygraph
.
no_grad
():
F
.
assign
(
w
,
v
)
F
.
assign
(
g_var
,
g
)
setattr
(
layer
,
name
,
fn
.
compute_weight
(
layer
))
layer
.
register_forward_pre_hook
(
fn
)
return
fn
def
remove
(
self
,
layer
):
w_var
=
self
.
compute_weight
(
layer
)
delattr
(
layer
,
self
.
name
)
del
layer
.
_parameters
[
self
.
name
+
'_g'
]
del
layer
.
_parameters
[
self
.
name
+
'_v'
]
w
=
layer
.
create_parameter
(
w_var
.
shape
,
dtype
=
w_var
.
dtype
)
layer
.
add_parameter
(
self
.
name
,
w
)
with
dygraph
.
no_grad
():
F
.
assign
(
w_var
,
w
)
def
__call__
(
self
,
layer
,
inputs
):
setattr
(
layer
,
self
.
name
,
self
.
compute_weight
(
layer
))
def
weight_norm
(
layer
,
name
=
'weight'
,
dim
=
0
):
"""
This weight_norm layer applies weight normalization to a parameter according to the
following formula:
.. math::
\mathbf{w} = g \dfrac{v}{\|v\|}
Weight normalization is a reparameterization of the weight vectors in a neural network that
decouples the magnitude of those weight vectors from their direction. Weight normalization
replaces the parameter specified by `name`(eg: 'weight') with two parameters: one parameter
specifying the magnitude (eg: 'weight_g') and one parameter specifying the direction
(eg: 'weight_v'). Weight normalization has been implemented as discussed in this paper:
`Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks
<https://arxiv.org/pdf/1602.07868.pdf>`_.
Parameters:
layer(Layer): Layer of paddle, which has weight.
name(str, optional): Name of the weight parameter. Default: 'weight'.
dim(int, optional): Dimension over which to compute the norm. Dim is a non-negative number
which is less than the rank of weight Tensor. For Example, dim can be chosen from 0,
1, 2, 3 for convolution whose weight shape is [cout, cin, kh, kw] and rank is 4.
If dim is set to None, meaning that all elements will be normalized. Default: 0.
Returns:
Origin layer with weight norm hook.
Examples:
.. code-block:: python
import numpy as np
from paddle.nn import Conv2D
from paddle.nn.utils import weight_norm
x = np.array([[[[0.3, 0.4], [0.3, 0.07]], [[0.83, 0.37], [0.18, 0.93]]]]).astype('float32')
paddle.disable_static()
conv = Conv2D(3, 5, 3)
wn = weight_norm(conv)
print(conv.weight_g.shape)
# [5]
print(conv.weight_v.shape)
# [5, 3, 3, 3]
"""
WeightNorm
.
apply
(
layer
,
name
,
dim
)
return
layer
def
remove_weight_norm
(
layer
,
name
=
'weight'
):
"""
remove weight normalization from layer.
Parameters:
layer(Layer): Layer of paddle, which has weight.
name(str, optional): Name of the weight parameter. Default: 'weight'.
Returns:
Origin layer without weight norm
Examples:
.. code-block:: python
import paddle
from paddle.nn import Conv2D
from paddle.nn.utils import weight_norm, remove_weight_norm
paddle.disable_static()
conv = Conv2D(3, 5, 3)
wn = weight_norm(conv)
remove_weight_norm(conv)
print(conv.weight_g)
# AttributeError: 'Conv2D' object has no attribute 'weight_g'
"""
for
k
,
hook
in
layer
.
_forward_pre_hooks
.
items
():
if
isinstance
(
hook
,
WeightNorm
)
and
hook
.
name
==
name
:
hook
.
remove
(
layer
)
del
layer
.
_forward_pre_hooks
[
k
]
return
layer
raise
ValueError
(
"weight_norm of '{}' not found in {}"
.
format
(
name
,
layer
))
python/setup.py.in
浏览文件 @
fd66d762
...
@@ -201,6 +201,7 @@ packages=['paddle',
...
@@ -201,6 +201,7 @@ packages=['paddle',
'paddle.nn.functional',
'paddle.nn.functional',
'paddle.nn.layer',
'paddle.nn.layer',
'paddle.nn.initializer',
'paddle.nn.initializer',
'paddle.nn.utils',
'paddle.metric',
'paddle.metric',
'paddle.static',
'paddle.static',
'paddle.static.nn',
'paddle.static.nn',
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录