提交 fd5c1c8a 编写于 作者: G guosheng

Merge branch 'develop' of https://github.com/PaddlePaddle/paddle into...

Merge branch 'develop' of https://github.com/PaddlePaddle/paddle into enhance-lookup_table_op-padidx
...@@ -65,14 +65,19 @@ bool PriorBoxLayer::init(const LayerMap& layerMap, ...@@ -65,14 +65,19 @@ bool PriorBoxLayer::init(const LayerMap& layerMap,
std::copy(pbConf.aspect_ratio().begin(), std::copy(pbConf.aspect_ratio().begin(),
pbConf.aspect_ratio().end(), pbConf.aspect_ratio().end(),
std::back_inserter(tmp)); std::back_inserter(tmp));
// flip
int inputRatioLength = tmp.size(); if (maxSize_.size() > 0) CHECK_EQ(minSize_.size(), maxSize_.size());
for (int index = 0; index < inputRatioLength; index++) {
aspectRatio_.push_back(tmp[index]); // flip aspect ratios
aspectRatio_.push_back(1 / tmp[index]); for (int index = 0; index < tmp.size(); index++) {
real ar = tmp[index];
if (fabs(ar - 1.) < 1e-6) continue;
aspectRatio_.push_back(ar);
aspectRatio_.push_back(1. / ar);
} }
numPriors_ = aspectRatio_.size();
if (maxSize_.size() > 0) numPriors_++; numPriors_ = aspectRatio_.size() * minSize_.size() + maxSize_.size();
return true; return true;
} }
...@@ -99,50 +104,39 @@ void PriorBoxLayer::forward(PassType passType) { ...@@ -99,50 +104,39 @@ void PriorBoxLayer::forward(PassType passType) {
for (int w = 0; w < layerWidth; ++w) { for (int w = 0; w < layerWidth; ++w) {
real centerX = (w + 0.5) * stepW; real centerX = (w + 0.5) * stepW;
real centerY = (h + 0.5) * stepH; real centerY = (h + 0.5) * stepH;
real minSize = 0;
for (size_t s = 0; s < minSize_.size(); s++) { for (size_t s = 0; s < minSize_.size(); s++) {
// first prior. real minSize = minSize_[s];
minSize = minSize_[s];
real boxWidth = minSize; real boxWidth = minSize;
real boxHeight = minSize; real boxHeight = minSize;
// xmin, ymin, xmax, ymax.
tmpPtr[idx++] = (centerX - boxWidth / 2.) / imageWidth; // priors with different aspect ratios
tmpPtr[idx++] = (centerY - boxHeight / 2.) / imageHeight; for (size_t r = 0; r < aspectRatio_.size(); r++) {
tmpPtr[idx++] = (centerX + boxWidth / 2.) / imageWidth; real ar = aspectRatio_[r];
tmpPtr[idx++] = (centerY + boxHeight / 2.) / imageHeight; boxWidth = minSize * sqrt(ar);
// set the variance. boxHeight = minSize / sqrt(ar);
for (int t = 0; t < 4; t++) tmpPtr[idx++] = variance_[t]; tmpPtr[idx++] = (centerX - boxWidth / 2.) / imageWidth;
tmpPtr[idx++] = (centerY - boxHeight / 2.) / imageHeight;
tmpPtr[idx++] = (centerX + boxWidth / 2.) / imageWidth;
tmpPtr[idx++] = (centerY + boxHeight / 2.) / imageHeight;
// set the variance.
for (int t = 0; t < 4; t++) tmpPtr[idx++] = variance_[t];
}
if (maxSize_.size() > 0) { if (maxSize_.size() > 0) {
CHECK_EQ(minSize_.size(), maxSize_.size()); // square prior with size sqrt(minSize * maxSize)
// second prior. real maxSize = maxSize_[s];
for (size_t s = 0; s < maxSize_.size(); s++) { boxWidth = boxHeight = sqrt(minSize * maxSize);
real maxSize = maxSize_[s]; tmpPtr[idx++] = (centerX - boxWidth / 2.) / imageWidth;
boxWidth = boxHeight = sqrt(minSize * maxSize); tmpPtr[idx++] = (centerY - boxHeight / 2.) / imageHeight;
tmpPtr[idx++] = (centerX - boxWidth / 2.) / imageWidth; tmpPtr[idx++] = (centerX + boxWidth / 2.) / imageWidth;
tmpPtr[idx++] = (centerY - boxHeight / 2.) / imageHeight; tmpPtr[idx++] = (centerY + boxHeight / 2.) / imageHeight;
tmpPtr[idx++] = (centerX + boxWidth / 2.) / imageWidth; // set the variance.
tmpPtr[idx++] = (centerY + boxHeight / 2.) / imageHeight; for (int t = 0; t < 4; t++) tmpPtr[idx++] = variance_[t];
// set the variance.
for (int t = 0; t < 4; t++) tmpPtr[idx++] = variance_[t];
}
} }
} }
// rest of priors.
for (size_t r = 0; r < aspectRatio_.size(); r++) {
real ar = aspectRatio_[r];
if (fabs(ar - 1.) < 1e-6) continue;
real boxWidth = minSize * sqrt(ar);
real boxHeight = minSize / sqrt(ar);
tmpPtr[idx++] = (centerX - boxWidth / 2.) / imageWidth;
tmpPtr[idx++] = (centerY - boxHeight / 2.) / imageHeight;
tmpPtr[idx++] = (centerX + boxWidth / 2.) / imageWidth;
tmpPtr[idx++] = (centerY + boxHeight / 2.) / imageHeight;
// set the variance.
for (int t = 0; t < 4; t++) tmpPtr[idx++] = variance_[t];
}
} }
} }
// clip the prior's coordidate such that it is within [0, 1] // clip the prior's coordidate such that it is within [0, 1]
for (int d = 0; d < dim * 2; ++d) for (int d = 0; d < dim * 2; ++d)
if ((d % 8) < 4) if ((d % 8) < 4)
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "sampler.h"
namespace paddle {
namespace random {
Sampler::~Sampler() {}
UniformSampler::UniformSampler(int64 range)
: Sampler(range), inv_range_(1.0 / range) {
random_engine_ = std::make_shared<std::mt19937>(seed_);
dist_ = std::make_shared<std::uniform_int_distribution<>>(0, range);
}
UniformSampler::UniformSampler(int64 range, unsigned int seed)
: Sampler(range, seed), inv_range_(1.0 / range) {
random_engine_ = std::make_shared<std::mt19937>(seed_);
dist_ = std::make_shared<std::uniform_int_distribution<>>(0, range);
}
int64 UniformSampler::Sample() const { return (*dist_)(*random_engine_); }
float UniformSampler::Probability(int64 value) const { return inv_range_; }
LogUniformSampler::LogUniformSampler(int64 range)
: Sampler(range), log_range_(log(range + 1)) {
random_engine_ = std::make_shared<std::mt19937>(seed_);
dist_ = std::make_shared<std::uniform_real_distribution<>>(0, 1);
}
LogUniformSampler::LogUniformSampler(int64 range, unsigned int seed)
: Sampler(range, seed), log_range_(log(range + 1)) {
random_engine_ = std::make_shared<std::mt19937>(seed_);
dist_ = std::make_shared<std::uniform_real_distribution<>>(0, 1);
}
int64 LogUniformSampler::Sample() const {
// Got Log Uniform distribution from uniform distribution by
// inverse_transform_sampling method
// More details:
// https://wanghaoshuang.github.io/2017/11/Log-uniform-distribution-sampler/
const int64 value =
static_cast<int64>(exp((*dist_)(*random_engine_) * log_range_)) - 1;
// Mathematically, value should be <= range_, but might not be due to some
// floating point roundoff, so we mod by range_.
return value % range_;
}
float LogUniformSampler::Probability(int64 value) const {
// Given f(x) = 1/[(x+1) * log_range_]
// The value's probability is integral of f(x) from value to (value + 1)
// More details:
// https://wanghaoshuang.github.io/2017/11/Log-uniform-distribution-sampler
return (log((value + 2.0) / (value + 1.0))) / log_range_;
}
} // namespace random
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <memory>
#include <random>
typedef long int64;
namespace paddle {
namespace operators {
namespace math {
// TODO(wanghaoshuang): Support for GPU
/**
* Sample integers from [0, range).
*/
class Sampler {
public:
explicit Sampler(int64 range) : range_(range) {
PADDLE_ENFORCE_GT(range, 0);
std::random_device r;
seed_ = r();
}
explicit Sampler(int64 range, unsigned int seed)
: range_(range), seed_(seed) {
PADDLE_ENFORCE_GT(range, 0);
}
virtual ~Sampler();
// Sample a single value
virtual int64 Sample() const = 0;
// The probability that a single call to Sample() returns the given value.
virtual float Probability(int64 value) const = 0;
int64 range() { return range_; };
protected:
const int64 range_;
unsigned int seed_;
};
/**
* Sample integers from [0, range).
* And the distribution function is:
* P(x) = 1 / range
*/
class UniformSampler : public Sampler {
public:
explicit UniformSampler(int64 range);
explicit UniformSampler(int64 range, unsigned int seed);
~UniformSampler() override {}
int64 Sample() const override;
float Probability(int64 value) const override;
private:
const float inv_range_;
std::shared_ptr<std::mt19937_64> random_engine_;
std::shared_ptr<std::uniform_int_distribution<>> dist_;
};
/**
* Sample integers from [0, range).
* And the distribution function is:
* P(x) = (1/ln(range+1)) * ln(1 + 1/(x + 1))
*/
class LogUniformSampler : public Sampler {
public:
explicit LogUniformSampler(int64 range);
explicit LogUniformSampler(int64 range, unsigned int seed);
~LogUniformSampler() override {}
int64 Sample() const override;
float Probability(int64 value) const override;
private:
const float log_range_;
std::shared_ptr<std::mt19937_64> random_engine_;
std::shared_ptr<std::uniform_real_distribution<>> dist_;
};
} // math
} // namespace operators
} // namespace paddle
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册