Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
fd41a87a
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
fd41a87a
编写于
3月 04, 2017
作者:
Y
Yu Yang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
complete data_type documentation
上级
3e398eaa
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
114 addition
and
11 deletion
+114
-11
doc/api/index_en.rst
doc/api/index_en.rst
+9
-1
doc/api/v2/data.rst
doc/api/v2/data.rst
+6
-0
python/paddle/trainer/PyDataProvider2.py
python/paddle/trainer/PyDataProvider2.py
+89
-4
python/paddle/v2/data_type.py
python/paddle/v2/data_type.py
+10
-6
未找到文件。
doc/api/index_en.rst
浏览文件 @
fd41a87a
...
...
@@ -7,4 +7,12 @@ Model Config API
.. toctree::
:maxdepth: 1
v2/model_configs.rst
\ No newline at end of file
v2/model_configs.rst
Data API
--------
.. toctree::
:maxdepth: 1
v2/data.rst
doc/api/v2/data.rst
0 → 100644
浏览文件 @
fd41a87a
#########
DataTypes
#########
.. automodule:: paddle.v2.data_type
:members:
python/paddle/trainer/PyDataProvider2.py
浏览文件 @
fd41a87a
...
...
@@ -45,6 +45,23 @@ class CacheType(object):
class
InputType
(
object
):
"""
InputType is the base class for paddle input types.
.. note::
this is a base class, and should never be used by user.
:param dim: dimension of input. If the input is an integer, it means the
value range. Otherwise, it means the size of layer.
:type dim: int
:param seq_type: sequence type of input. 0 means it is not a sequence. 1
means it is a variable length sequence. 2 means it is a
nested sequence.
:type seq_type: int
:param type: data type of input.
:type type: int
"""
__slots__
=
[
'dim'
,
'seq_type'
,
'type'
]
def
__init__
(
self
,
dim
,
seq_type
,
tp
):
...
...
@@ -54,20 +71,61 @@ class InputType(object):
def
dense_slot
(
dim
,
seq_type
=
SequenceType
.
NO_SEQUENCE
):
"""
Dense Vector. It means the input feature is dense float vector. For example,
if the input is an image with 28*28 pixels, the input of Paddle neural
network should be a dense vector with dimension 784.
:param dim: dimension of this vector.
:type dim: int
:param seq_type: sequence type of input.
:type seq_type: int
:return: An input type object.
:rtype: InputType
"""
return
InputType
(
dim
,
seq_type
,
DataType
.
Dense
)
def
sparse_non_value_slot
(
dim
,
seq_type
=
SequenceType
.
NO_SEQUENCE
):
"""
Sparse binary vector. It means the input feature is a sparse vector and the
every element in this vector is either zero or one.
:param dim: dimension of this vector.
:type dim: int
:param seq_type: sequence type of this input.
:type seq_type: int
:return: An input type object.
:rtype: InputType
"""
return
InputType
(
dim
,
seq_type
,
DataType
.
SparseNonValue
)
def
sparse_value_slot
(
dim
,
seq_type
=
SequenceType
.
NO_SEQUENCE
):
"""
Sparse vector. It means the input feature is a sparse vector. Most of the
elements in this vector are zero, others could be any float value.
:param dim: dimension of this vector.
:type dim: int
:param seq_type: sequence type of this input.
:type seq_type: int
:return: An input type object.
:rtype: InputType
"""
return
InputType
(
dim
,
seq_type
,
DataType
.
SparseValue
)
def
index_slot
(
value_range
,
seq_type
=
SequenceType
.
NO_SEQUENCE
):
"""Data type of integer.
"""
Data type of integer.
:param seq_type: sequence type of this input.
:type seq_type: int
:param value_range: range of this integer.
:type value_range: int
:return: An input type object
:rtype: InputType
"""
return
InputType
(
value_range
,
seq_type
,
DataType
.
Index
)
...
...
@@ -76,10 +134,17 @@ dense_vector = dense_slot
sparse_binary_vector
=
sparse_non_value_slot
sparse_vector
=
sparse_value_slot
integer_value
=
index_slot
integer_value
.
__doc__
=
index_slot
.
__doc__
def
dense_vector_sequence
(
dim
):
"""
Data type of a sequence of dense vector.
:param dim: dimension of dense vector.
:type dim: int
:return: An input type object
:rtype: InputType
"""
return
dense_vector
(
dim
,
seq_type
=
SequenceType
.
SEQUENCE
)
...
...
@@ -88,6 +153,15 @@ def dense_vector_sub_sequence(dim):
def
sparse_binary_vector_sequence
(
dim
):
"""
Data type of a sequence of sparse vector, which every element is either zero
or one.
:param dim: dimension of sparse vector.
:type dim: int
:return: An input type object
:rtype: InputType
"""
return
sparse_binary_vector
(
dim
,
seq_type
=
SequenceType
.
SEQUENCE
)
...
...
@@ -96,6 +170,15 @@ def sparse_binary_vector_sub_sequence(dim):
def
sparse_vector_sequence
(
dim
):
"""
Data type of a sequence of sparse vector, which most elements are zero,
others could be any float value.
:param dim: dimension of sparse vector.
:type dim: int
:return: An input type object
:rtype: InputType
"""
return
sparse_vector
(
dim
,
seq_type
=
SequenceType
.
SEQUENCE
)
...
...
@@ -104,8 +187,11 @@ def sparse_vector_sub_sequence(dim):
def
integer_value_sequence
(
value_range
):
"""Data type of a sequence of integer.
"""
Data type of a sequence of integer.
:param value_range: range of each element.
:type value_range: int
"""
return
integer_value
(
value_range
,
seq_type
=
SequenceType
.
SEQUENCE
)
...
...
@@ -115,7 +201,6 @@ def integer_value_sub_sequence(dim):
integer_sequence
=
integer_value_sequence
integer_sequence
.
__doc__
=
integer_value_sequence
.
__doc__
class
SingleSlotWrapper
(
object
):
...
...
python/paddle/v2/data_type.py
浏览文件 @
fd41a87a
...
...
@@ -12,11 +12,15 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle.trainer.PyDataProvider2
import
\
InputType
,
DataType
,
dense_vector
,
sparse_binary_vector
,
\
sparse_vector
,
integer_value
,
integer_value_sequence
import
paddle.trainer.PyDataProvider2
as
pydp2
__all__
=
[
'InputType'
,
'DataType'
,
'dense_vector'
,
'sparse_binary_vector'
,
'sparse_vector'
,
'integer_value'
,
'integer_value_sequence'
import_list
=
[
nm
for
nm
in
dir
(
pydp2
)
if
'_'
in
nm
and
nm
[
0
]
!=
'_'
and
(
'value'
in
nm
or
'vector'
in
nm
)
]
import_list
.
extend
([
'InputType'
])
for
nm
in
import_list
:
globals
()[
nm
]
=
getattr
(
pydp2
,
nm
)
__all__
=
import_list
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录