Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
fd1d2c89
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
fd1d2c89
编写于
12月 18, 2018
作者:
Q
Qiyang Min
提交者:
GitHub
12月 18, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #14894 from velconia/add_huber_regression_loss_op
Add python interface for huber loss
上级
acd4b759
ea2a34ee
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
72 addition
and
21 deletion
+72
-21
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-0
paddle/fluid/operators/huber_loss_op.cc
paddle/fluid/operators/huber_loss_op.cc
+4
-3
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+67
-18
未找到文件。
paddle/fluid/API.spec
浏览文件 @
fd1d2c89
...
@@ -201,6 +201,7 @@ paddle.fluid.layers.merge_selected_rows ArgSpec(args=['x', 'name'], varargs=None
...
@@ -201,6 +201,7 @@ paddle.fluid.layers.merge_selected_rows ArgSpec(args=['x', 'name'], varargs=None
paddle.fluid.layers.get_tensor_from_selected_rows ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.get_tensor_from_selected_rows ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.lstm ArgSpec(args=['input', 'init_h', 'init_c', 'max_len', 'hidden_size', 'num_layers', 'dropout_prob', 'is_bidirec', 'is_test', 'name', 'default_initializer', 'seed'], varargs=None, keywords=None, defaults=(0.0, False, False, None, None, -1))
paddle.fluid.layers.lstm ArgSpec(args=['input', 'init_h', 'init_c', 'max_len', 'hidden_size', 'num_layers', 'dropout_prob', 'is_bidirec', 'is_test', 'name', 'default_initializer', 'seed'], varargs=None, keywords=None, defaults=(0.0, False, False, None, None, -1))
paddle.fluid.layers.psroi_pool ArgSpec(args=['input', 'rois', 'output_channels', 'spatial_scale', 'pooled_height', 'pooled_width', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.psroi_pool ArgSpec(args=['input', 'rois', 'output_channels', 'spatial_scale', 'pooled_height', 'pooled_width', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.huber_loss ArgSpec(args=['input', 'label', 'delta'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None))
paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None))
paddle.fluid.layers.read_file ArgSpec(args=['reader'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.read_file ArgSpec(args=['reader'], varargs=None, keywords=None, defaults=None)
...
...
paddle/fluid/operators/huber_loss_op.cc
浏览文件 @
fd1d2c89
...
@@ -124,8 +124,9 @@ REGISTER_OPERATOR(huber_loss, ops::HuberLossOp, ops::HuberLossOpMaker<float>,
...
@@ -124,8 +124,9 @@ REGISTER_OPERATOR(huber_loss, ops::HuberLossOp, ops::HuberLossOpMaker<float>,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OPERATOR
(
huber_loss_grad
,
ops
::
HuberLossGradOp
);
REGISTER_OPERATOR
(
huber_loss_grad
,
ops
::
HuberLossGradOp
);
REGISTER_OP_CPU_KERNEL
(
REGISTER_OP_CPU_KERNEL
(
huber_loss
,
huber_loss
,
ops
::
HuberLossKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
HuberLossKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
ops
::
HuberLossKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
REGISTER_OP_CPU_KERNEL
(
huber_loss_grad
,
huber_loss_grad
,
ops
::
HuberLossGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
ops
::
HuberLossGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
HuberLossGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
python/paddle/fluid/layers/nn.py
浏览文件 @
fd1d2c89
...
@@ -176,6 +176,7 @@ __all__ = [
...
@@ -176,6 +176,7 @@ __all__ = [
'get_tensor_from_selected_rows'
,
'get_tensor_from_selected_rows'
,
'lstm'
,
'lstm'
,
'psroi_pool'
,
'psroi_pool'
,
'huber_loss'
,
]
]
kIgnoreIndex
=
-
100
kIgnoreIndex
=
-
100
...
@@ -497,7 +498,7 @@ def lstm(input,
...
@@ -497,7 +498,7 @@ def lstm(input,
If Device is GPU, This op will use cudnn LSTM implementation
If Device is GPU, This op will use cudnn LSTM implementation
A four-gate Long Short-Term Memory network with no peephole connections.
A four-gate Long Short-Term Memory network with no peephole connections.
In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:
the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:
$$ i_t =
\\
sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i) $$
$$ i_t =
\\
sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i) $$
...
@@ -524,19 +525,19 @@ def lstm(input,
...
@@ -524,19 +525,19 @@ def lstm(input,
- $
\t
ilde{c_t}$ is also called candidate hidden state,
- $
\t
ilde{c_t}$ is also called candidate hidden state,
which is computed based on the current input and the previous hidden state.
which is computed based on the current input and the previous hidden state.
Where sigmoid is the sigmoid operator: sigmoid(x) = 1 / (1 + e^-x), * represents a point-wise multiplication,
Where sigmoid is the sigmoid operator: sigmoid(x) = 1 / (1 + e^-x), * represents a point-wise multiplication,
X represensts a matrix multiplication
X represensts a matrix multiplication
Args:
Args:
input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
init_h(Variable): The initial hidden state of the LSTM
init_h(Variable): The initial hidden state of the LSTM
This is a tensor with shape ( num_layers x batch_size x hidden_size)
This is a tensor with shape ( num_layers x batch_size x hidden_size)
if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
init_c(Variable): The initial cell state of the LSTM.
init_c(Variable): The initial cell state of the LSTM.
This is a tensor with shape ( num_layers x batch_size x hidden_size )
This is a tensor with shape ( num_layers x batch_size x hidden_size )
if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
hidden_size (int): hidden size of the LSTM
hidden_size (int): hidden size of the LSTM
num_layers (int): total layers number of the LSTM
num_layers (int): total layers number of the LSTM
dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
...
@@ -555,10 +556,10 @@ def lstm(input,
...
@@ -555,10 +556,10 @@ def lstm(input,
if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
last_h(Tensor): the hidden state of the last step of LSTM
last_h(Tensor): the hidden state of the last step of LSTM
shape is ( num_layers x batch_size x hidden_size )
shape is ( num_layers x batch_size x hidden_size )
if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
last_c(Tensor): the cell state of the last step of LSTM
last_c(Tensor): the cell state of the last step of LSTM
shape is ( num_layers x batch_size x hidden_size )
shape is ( num_layers x batch_size x hidden_size )
if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
Examples:
Examples:
...
@@ -4658,7 +4659,7 @@ def ctc_greedy_decoder(input, blank, name=None):
...
@@ -4658,7 +4659,7 @@ def ctc_greedy_decoder(input, blank, name=None):
[0.5, 0.1, 0.3, 0.1]]
[0.5, 0.1, 0.3, 0.1]]
input.lod = [[4, 4]]
input.lod = [[4, 4]]
Computation:
Computation:
step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
...
@@ -4691,7 +4692,7 @@ def ctc_greedy_decoder(input, blank, name=None):
...
@@ -4691,7 +4692,7 @@ def ctc_greedy_decoder(input, blank, name=None):
Returns:
Returns:
Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1].
Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1].
'Lp' is the sum if all output sequences' length. If all the sequences
'Lp' is the sum if all output sequences' length. If all the sequences
in result were empty, the result LoDTensor will be [-1] with
in result were empty, the result LoDTensor will be [-1] with
LoD [[]] and dims [1, 1].
LoD [[]] and dims [1, 1].
Examples:
Examples:
...
@@ -5045,7 +5046,7 @@ def hsigmoid(input,
...
@@ -5045,7 +5046,7 @@ def hsigmoid(input,
"""
"""
The hierarchical sigmoid operator is used to accelerate the training
The hierarchical sigmoid operator is used to accelerate the training
process of language model. This operator organizes the classes into a
process of language model. This operator organizes the classes into a
complete binary tree, or you can use is_custom to pass your own tree to
complete binary tree, or you can use is_custom to pass your own tree to
implement hierarchical. Each leaf node represents a class(a word) and each
implement hierarchical. Each leaf node represents a class(a word) and each
internal node acts as a binary classifier. For each word there's a unique
internal node acts as a binary classifier. For each word there's a unique
path from root to it's leaf node, hsigmoid calculate the cost for each
path from root to it's leaf node, hsigmoid calculate the cost for each
...
@@ -5061,7 +5062,7 @@ def hsigmoid(input,
...
@@ -5061,7 +5062,7 @@ def hsigmoid(input,
2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
means label of each binary classification, using 1 indicate true, 0 indicate false.
means label of each binary classification, using 1 indicate true, 0 indicate false.
4. now, each word should has its path and code along the path, you can pass a batch of path and code
4. now, each word should has its path and code along the path, you can pass a batch of path and code
related to the same batch of inputs.
related to the same batch of inputs.
...
@@ -5071,8 +5072,8 @@ def hsigmoid(input,
...
@@ -5071,8 +5072,8 @@ def hsigmoid(input,
and :math:`D` is the feature size.
and :math:`D` is the feature size.
label (Variable): The tensor variable contains labels of training data.
label (Variable): The tensor variable contains labels of training data.
It's a tensor with shape is :math:`[N
\\
times 1]`.
It's a tensor with shape is :math:`[N
\\
times 1]`.
num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
which indicates the num of classes using by binary classify.
which indicates the num of classes using by binary classify.
param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
...
@@ -5085,15 +5086,15 @@ def hsigmoid(input,
...
@@ -5085,15 +5086,15 @@ def hsigmoid(input,
is not set, the bias is initialized zero. Default: None.
is not set, the bias is initialized zero. Default: None.
name (str|None): A name for this layer(optional). If set None, the layer
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically. Default: None.
will be named automatically. Default: None.
path_table: (Variable|None) this variable can store each batch of samples' path to root,
path_table: (Variable|None) this variable can store each batch of samples' path to root,
it should be in leaf -> root order
it should be in leaf -> root order
path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
structure and each element in this array is indexes in parent nodes' Weight Matrix.
structure and each element in this array is indexes in parent nodes' Weight Matrix.
path_code: (Variable|None) this variable can store each batch of samples' code,
path_code: (Variable|None) this variable can store each batch of samples' code,
each code consist with every code of parent nodes. it should be in leaf -> root order
each code consist with every code of parent nodes. it should be in leaf -> root order
is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
of W and input will be sparse.
of W and input will be sparse.
Returns:
Returns:
...
@@ -9377,3 +9378,51 @@ def psroi_pool(input,
...
@@ -9377,3 +9378,51 @@ def psroi_pool(input,
'pooled_width'
:
pooled_width
'pooled_width'
:
pooled_width
})
})
return
out
return
out
def
huber_loss
(
input
,
label
,
delta
):
"""
Huber loss is a loss function used in robust.
Huber loss can evaluate the fitness of input to label.
Different from MSE loss, Huber loss is more robust for outliers.
When the difference between input and label is large than delta
.. math::
huber\_loss = delta * (label - input) - 0.5 * delta * delta
When the difference between input and label is less than delta
.. math::
huber\_loss = 0.5 * (label - input) * (label - input)
Args:
input (Variable): This input is a probability computed by the previous operator.
The first dimension is batch size, and the last dimension is 1.
label (Variable): The groud truth whose first dimension is batch size
and last dimension is 1.
delta (float): The parameter of huber loss, which controls
the range of outliers
Returns:
huber\_loss (Variable): The huber loss with shape [batch_size, 1].
Examples:
.. code-block:: python
predictions = fluid.layers.softmax(x)
loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
"""
helper
=
LayerHelper
(
'huber_loss'
,
**
locals
())
residual
=
helper
.
create_variable_for_type_inference
(
dtype
=
helper
.
input_dtype
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
helper
.
input_dtype
())
helper
.
append_op
(
type
=
'huber_loss'
,
inputs
=
{
'X'
:
input
,
'Y'
:
label
},
outputs
=
{
'Out'
:
out
,
'Residual'
:
residual
},
attrs
=
{
'delta'
:
delta
})
return
out
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录