Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
fcec564c
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
fcec564c
编写于
2月 06, 2023
作者:
Y
Yuang Liu
提交者:
GitHub
2月 06, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fused attn pass single ut (#50227)
上级
8fb2dce9
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
71 addition
and
57 deletion
+71
-57
paddle/fluid/framework/ir/fused_attention_pass.cc
paddle/fluid/framework/ir/fused_attention_pass.cc
+29
-29
python/paddle/fluid/tests/unittests/test_fused_attention_pass.py
...paddle/fluid/tests/unittests/test_fused_attention_pass.py
+42
-28
未找到文件。
paddle/fluid/framework/ir/fused_attention_pass.cc
浏览文件 @
fcec564c
...
@@ -123,23 +123,23 @@ PDNode* FusedAttentionPattern::operator()(PDNode* x,
...
@@ -123,23 +123,23 @@ PDNode* FusedAttentionPattern::operator()(PDNode* x,
fuse_qkv_split_out_v_node
});
fuse_qkv_split_out_v_node
});
// core attention pattern
// core attention pattern
auto
*
qk_scale_node
=
pattern
->
NewNode
(
qk_scale_op_repr
())
->
assert_is_op
(
"scale"
);
auto
*
qk_scale_out_node
=
pattern
->
NewNode
(
qk_scale_out_repr
())
->
assert_is_op_output
(
"scale"
);
fuse_qkv_split_out_q_node
->
assert_is_op_input
(
"scale"
,
"X"
);
qk_scale_node
->
LinksFrom
({
fuse_qkv_split_out_q_node
})
.
LinksTo
({
qk_scale_out_node
});
auto
*
qk_matmul_node
=
auto
*
qk_matmul_node
=
pattern
->
NewNode
(
qk_matmul_op_repr
())
->
assert_is_op
(
"matmul_v2"
);
pattern
->
NewNode
(
qk_matmul_op_repr
())
->
assert_is_op
(
"matmul_v2"
);
auto
*
qk_matmul_out_node
=
auto
*
qk_matmul_out_node
=
pattern
->
NewNode
(
qk_matmul_out_repr
())
->
assert_is_op_output
(
"matmul_v2"
);
pattern
->
NewNode
(
qk_matmul_out_repr
())
->
assert_is_op_output
(
"matmul_v2"
);
fuse_qkv_split_out_q
_node
->
assert_is_op_input
(
"matmul_v2"
,
"X"
);
qk_scale_out
_node
->
assert_is_op_input
(
"matmul_v2"
,
"X"
);
fuse_qkv_split_out_k_node
->
assert_is_op_input
(
"matmul_v2"
,
"Y"
);
fuse_qkv_split_out_k_node
->
assert_is_op_input
(
"matmul_v2"
,
"Y"
);
qk_matmul_node
qk_matmul_node
->
LinksFrom
({
qk_scale_out_node
,
fuse_qkv_split_out_k_node
})
->
LinksFrom
({
fuse_qkv_split_out_q_node
,
fuse_qkv_split_out_k_node
})
.
LinksTo
({
qk_matmul_out_node
});
.
LinksTo
({
qk_matmul_out_node
});
auto
*
qk_scale_node
=
pattern
->
NewNode
(
qk_scale_op_repr
())
->
assert_is_op
(
"scale"
);
auto
*
qk_scale_out_node
=
pattern
->
NewNode
(
qk_scale_out_repr
())
->
assert_is_op_output
(
"scale"
);
qk_matmul_out_node
->
assert_is_op_input
(
"scale"
,
"X"
);
qk_scale_node
->
LinksFrom
({
qk_matmul_out_node
}).
LinksTo
({
qk_scale_out_node
});
PDNode
*
add_mask_ele_add_out_node
{
nullptr
};
PDNode
*
add_mask_ele_add_out_node
{
nullptr
};
if
(
has_attn_mask
)
{
if
(
has_attn_mask
)
{
auto
*
add_mask_ele_add_node
=
pattern
->
NewNode
(
add_mask_ele_add_op_repr
())
auto
*
add_mask_ele_add_node
=
pattern
->
NewNode
(
add_mask_ele_add_op_repr
())
...
@@ -149,9 +149,9 @@ PDNode* FusedAttentionPattern::operator()(PDNode* x,
...
@@ -149,9 +149,9 @@ PDNode* FusedAttentionPattern::operator()(PDNode* x,
->
assert_is_op_input
(
"elementwise_add"
,
"Y"
);
->
assert_is_op_input
(
"elementwise_add"
,
"Y"
);
add_mask_ele_add_out_node
=
pattern
->
NewNode
(
add_mask_ele_add_out_repr
())
add_mask_ele_add_out_node
=
pattern
->
NewNode
(
add_mask_ele_add_out_repr
())
->
assert_is_op_output
(
"elementwise_add"
);
->
assert_is_op_output
(
"elementwise_add"
);
qk_
scale
_out_node
->
assert_is_op_input
(
"elementwise_add"
,
"X"
);
qk_
matmul
_out_node
->
assert_is_op_input
(
"elementwise_add"
,
"X"
);
add_mask_ele_add_node
add_mask_ele_add_node
->
LinksFrom
({
qk_
scale
_out_node
,
add_mask_ele_add_mask_node
})
->
LinksFrom
({
qk_
matmul
_out_node
,
add_mask_ele_add_mask_node
})
.
LinksTo
({
add_mask_ele_add_out_node
});
.
LinksTo
({
add_mask_ele_add_out_node
});
}
}
...
@@ -164,8 +164,8 @@ PDNode* FusedAttentionPattern::operator()(PDNode* x,
...
@@ -164,8 +164,8 @@ PDNode* FusedAttentionPattern::operator()(PDNode* x,
qk_softmax_node
->
LinksFrom
({
add_mask_ele_add_out_node
})
qk_softmax_node
->
LinksFrom
({
add_mask_ele_add_out_node
})
.
LinksTo
({
qk_softmax_out_node
});
.
LinksTo
({
qk_softmax_out_node
});
}
else
{
}
else
{
qk_
scale
_out_node
->
assert_is_op_input
(
"softmax"
,
"X"
);
qk_
matmul
_out_node
->
assert_is_op_input
(
"softmax"
,
"X"
);
qk_softmax_node
->
LinksFrom
({
qk_
scale
_out_node
})
qk_softmax_node
->
LinksFrom
({
qk_
matmul
_out_node
})
.
LinksTo
({
qk_softmax_out_node
});
.
LinksTo
({
qk_softmax_out_node
});
}
}
...
@@ -575,16 +575,8 @@ PDNode* FusedAttentionGradPattern::operator()(PDNode* x,
...
@@ -575,16 +575,8 @@ PDNode* FusedAttentionGradPattern::operator()(PDNode* x,
.
LinksTo
({
add_mask_ele_add_grad_x_grad_node
});
.
LinksTo
({
add_mask_ele_add_grad_x_grad_node
});
}
}
PDNode
*
qk_
scale
_grad_input_node
=
PDNode
*
qk_
matmul
_grad_input_node
=
has_attn_mask
?
add_mask_ele_add_grad_x_grad_node
:
qk_softmax_grad_out
;
has_attn_mask
?
add_mask_ele_add_grad_x_grad_node
:
qk_softmax_grad_out
;
auto
*
qk_scale_grad_node
=
pattern
->
NewNode
(
qk_scale_grad_op_repr
())
->
assert_is_op
(
"scale"
);
auto
*
qk_scale_grad_out_node
=
pattern
->
NewNode
(
qk_scale_grad_out_repr
())
->
assert_is_op_output
(
"scale"
);
qk_scale_grad_input_node
->
assert_is_op_input
(
"scale"
,
"X"
);
qk_scale_grad_node
->
LinksFrom
({
qk_scale_grad_input_node
})
.
LinksTo
({
qk_scale_grad_out_node
});
auto
*
qk_matmul_grad_node
=
pattern
->
NewNode
(
qk_matmul_grad_op_repr
())
auto
*
qk_matmul_grad_node
=
pattern
->
NewNode
(
qk_matmul_grad_op_repr
())
->
assert_is_op
(
"matmul_v2_grad"
);
->
assert_is_op
(
"matmul_v2_grad"
);
auto
*
qk_matmul_grad_x_node
=
pattern
->
NewNode
(
qk_matmul_grad_x_repr
())
auto
*
qk_matmul_grad_x_node
=
pattern
->
NewNode
(
qk_matmul_grad_x_repr
())
...
@@ -597,24 +589,32 @@ PDNode* FusedAttentionGradPattern::operator()(PDNode* x,
...
@@ -597,24 +589,32 @@ PDNode* FusedAttentionGradPattern::operator()(PDNode* x,
auto
*
qk_matmul_grad_w_grad_node
=
auto
*
qk_matmul_grad_w_grad_node
=
pattern
->
NewNode
(
qk_matmul_grad_w_grad_repr
())
pattern
->
NewNode
(
qk_matmul_grad_w_grad_repr
())
->
assert_is_op_output
(
"matmul_v2_grad"
,
"Y@GRAD"
);
->
assert_is_op_output
(
"matmul_v2_grad"
,
"Y@GRAD"
);
qk_
scale_grad_o
ut_node
->
assert_is_op_input
(
"matmul_v2_grad"
,
"Out@GRAD"
);
qk_
matmul_grad_inp
ut_node
->
assert_is_op_input
(
"matmul_v2_grad"
,
"Out@GRAD"
);
qk_matmul_grad_node
qk_matmul_grad_node
->
LinksFrom
({
qk_
scale_grad_o
ut_node
,
->
LinksFrom
({
qk_
matmul_grad_inp
ut_node
,
qk_matmul_grad_x_node
,
qk_matmul_grad_x_node
,
qk_matmul_grad_w_node
})
qk_matmul_grad_w_node
})
.
LinksTo
({
qk_matmul_grad_x_grad_node
,
qk_matmul_grad_w_grad_node
});
.
LinksTo
({
qk_matmul_grad_x_grad_node
,
qk_matmul_grad_w_grad_node
});
auto
*
qk_scale_grad_node
=
pattern
->
NewNode
(
qk_scale_grad_op_repr
())
->
assert_is_op
(
"scale"
);
auto
*
qk_scale_grad_out_node
=
pattern
->
NewNode
(
qk_scale_grad_out_repr
())
->
assert_is_op_output
(
"scale"
);
qk_matmul_grad_x_grad_node
->
assert_is_op_input
(
"scale"
,
"X"
);
qk_scale_grad_node
->
LinksFrom
({
qk_matmul_grad_x_grad_node
})
.
LinksTo
({
qk_scale_grad_out_node
});
// fuse qkv projection
// fuse qkv projection
auto
*
fuse_qkv_split_grad_node
=
auto
*
fuse_qkv_split_grad_node
=
pattern
->
NewNode
(
fuse_qkv_split_grad_op_repr
())
->
assert_is_op
(
"concat"
);
pattern
->
NewNode
(
fuse_qkv_split_grad_op_repr
())
->
assert_is_op
(
"concat"
);
auto
*
fuse_qkv_split_grad_out_node
=
auto
*
fuse_qkv_split_grad_out_node
=
pattern
->
NewNode
(
fuse_qkv_split_grad_out_repr
())
pattern
->
NewNode
(
fuse_qkv_split_grad_out_repr
())
->
assert_is_op_output
(
"concat"
);
->
assert_is_op_output
(
"concat"
);
qk_
matmul_grad_x_grad_node
->
assert_is_op_input
(
"concat"
);
// q grad
qk_
scale_grad_out_node
->
assert_is_op_input
(
"concat"
);
// q grad
qk_matmul_grad_w_grad_node
->
assert_is_op_input
(
"concat"
);
// k grad
qk_matmul_grad_w_grad_node
->
assert_is_op_input
(
"concat"
);
// k grad
qkv_matmul_grad_w_grad_node
->
assert_is_op_input
(
"concat"
);
// v grad
qkv_matmul_grad_w_grad_node
->
assert_is_op_input
(
"concat"
);
// v grad
fuse_qkv_split_grad_node
fuse_qkv_split_grad_node
->
LinksFrom
({
qk_
matmul_grad_x_grad
_node
,
->
LinksFrom
({
qk_
scale_grad_out
_node
,
qk_matmul_grad_w_grad_node
,
qk_matmul_grad_w_grad_node
,
qkv_matmul_grad_w_grad_node
})
qkv_matmul_grad_w_grad_node
})
.
LinksTo
({
fuse_qkv_split_grad_out_node
});
.
LinksTo
({
fuse_qkv_split_grad_out_node
});
...
@@ -894,7 +894,7 @@ ir::Graph* FusedAttentionsPass::PreMaskDropResFwd(
...
@@ -894,7 +894,7 @@ ir::Graph* FusedAttentionsPass::PreMaskDropResFwd(
fused_attention_op_desc
.
SetAttr
(
"transpose_qkv_wb"
,
true
);
fused_attention_op_desc
.
SetAttr
(
"transpose_qkv_wb"
,
true
);
std
::
vector
<
int
>
shape
=
PADDLE_GET_CONST
(
std
::
vector
<
int
>
shape
=
PADDLE_GET_CONST
(
std
::
vector
<
int
>
,
fuse_qkv_reshape_op_node
->
Op
()
->
GetAttr
(
"shape"
));
std
::
vector
<
int
>
,
fuse_qkv_reshape_op_node
->
Op
()
->
GetAttr
(
"shape"
));
fused_attention_op_desc
.
SetAttr
(
"num_heads"
,
shape
[
2
]);
fused_attention_op_desc
.
SetAttr
(
"num_heads"
,
shape
[
2
]
/
3
);
GET_IR_NODE_FROM_SUBGRAPH
(
GET_IR_NODE_FROM_SUBGRAPH
(
fuse_qkv_matmul_out_node
,
fuse_qkv_matmul_out
,
fused_attention_pattern
);
fuse_qkv_matmul_out_node
,
fuse_qkv_matmul_out
,
fused_attention_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
fuse_qkv_ele_add_bias_node
,
GET_IR_NODE_FROM_SUBGRAPH
(
fuse_qkv_ele_add_bias_node
,
...
@@ -1337,7 +1337,7 @@ ir::Graph* FusedAttentionsPass::PreMaskDropResBwd(
...
@@ -1337,7 +1337,7 @@ ir::Graph* FusedAttentionsPass::PreMaskDropResBwd(
std
::
vector
<
int
>
shape
=
std
::
vector
<
int
>
shape
=
PADDLE_GET_CONST
(
std
::
vector
<
int
>
,
PADDLE_GET_CONST
(
std
::
vector
<
int
>
,
fuse_qkv_reshape_grad_op_node
->
Op
()
->
GetAttr
(
"shape"
));
fuse_qkv_reshape_grad_op_node
->
Op
()
->
GetAttr
(
"shape"
));
fused_attention_grad_op_desc
.
SetAttr
(
"num_heads"
,
shape
[
2
]);
fused_attention_grad_op_desc
.
SetAttr
(
"num_heads"
,
shape
[
2
]
/
3
);
fused_attention_grad_op_desc
.
SetAttr
(
"pre_layer_norm"
,
true
);
fused_attention_grad_op_desc
.
SetAttr
(
"pre_layer_norm"
,
true
);
fused_attention_grad_op_desc
.
SetAttr
(
"transpose_qkv_wb"
,
true
);
fused_attention_grad_op_desc
.
SetAttr
(
"transpose_qkv_wb"
,
true
);
...
...
python/paddle/fluid/tests/unittests/test_fused_attention_pass.py
浏览文件 @
fcec564c
...
@@ -53,7 +53,7 @@ class MultiHeadAttention(paddle.nn.Layer):
...
@@ -53,7 +53,7 @@ class MultiHeadAttention(paddle.nn.Layer):
self
.
qkv_proj
=
paddle
.
nn
.
Linear
(
embed_dim
,
3
*
embed_dim
)
self
.
qkv_proj
=
paddle
.
nn
.
Linear
(
embed_dim
,
3
*
embed_dim
)
self
.
out_proj
=
paddle
.
nn
.
Linear
(
embed_dim
,
embed_dim
)
self
.
out_proj
=
paddle
.
nn
.
Linear
(
embed_dim
,
embed_dim
)
self
.
dropout
=
paddle
.
nn
.
Dropout
(
0.1
,
mode
=
"upscale_in_train"
)
self
.
dropout
=
paddle
.
nn
.
Dropout
(
1e-10
,
mode
=
"upscale_in_train"
)
def
forward
(
self
,
x
,
attn_mask
=
None
):
def
forward
(
self
,
x
,
attn_mask
=
None
):
residual
=
x
residual
=
x
...
@@ -64,13 +64,13 @@ class MultiHeadAttention(paddle.nn.Layer):
...
@@ -64,13 +64,13 @@ class MultiHeadAttention(paddle.nn.Layer):
# compute qkv
# compute qkv
qkv
=
self
.
qkv_proj
(
x
)
qkv
=
self
.
qkv_proj
(
x
)
qkv
=
paddle
.
reshape
(
qkv
,
[
0
,
0
,
self
.
num_heads
,
3
*
self
.
head_dim
])
qkv
=
paddle
.
reshape
(
qkv
,
[
0
,
0
,
3
*
self
.
num_heads
,
self
.
head_dim
])
qkv
=
paddle
.
transpose
(
qkv
,
[
0
,
2
,
1
,
3
])
qkv
=
paddle
.
transpose
(
qkv
,
[
0
,
2
,
1
,
3
])
q
,
k
,
v
=
paddle
.
split
(
qkv
,
num_or_sections
=
3
,
axis
=
-
1
)
q
,
k
,
v
=
paddle
.
split
(
qkv
,
num_or_sections
=
3
,
axis
=
1
)
# compute core attention
# compute core attention
q
=
paddle
.
scale
(
q
,
scale
=
self
.
head_dim
**-
0.5
)
product
=
paddle
.
matmul
(
x
=
q
,
y
=
k
,
transpose_y
=
True
)
product
=
paddle
.
matmul
(
x
=
q
,
y
=
k
,
transpose_y
=
True
)
product
=
paddle
.
scale
(
product
,
scale
=
self
.
head_dim
**-
0.5
)
if
attn_mask
is
not
None
:
if
attn_mask
is
not
None
:
product
=
product
+
attn_mask
product
=
product
+
attn_mask
weights
=
F
.
softmax
(
product
)
weights
=
F
.
softmax
(
product
)
...
@@ -104,21 +104,28 @@ class TestFusedAttentionPass(unittest.TestCase):
...
@@ -104,21 +104,28 @@ class TestFusedAttentionPass(unittest.TestCase):
self
.
pre_ln
=
True
self
.
pre_ln
=
True
self
.
attn_dropout
=
True
self
.
attn_dropout
=
True
self
.
add_mask
=
True
self
.
add_mask
=
True
self
.
x_data
=
None
self
.
mask_data
=
None
def
test_pass
(
self
):
def
get_rst
(
self
,
use_pass
=
False
):
batch_size
=
2
batch_size
=
2
seq_len
=
1024
seq_len
=
1024
hidden_size
=
768
hidden_size
=
768
num_heads
=
12
num_heads
=
12
x_data
=
np
.
random
.
rand
(
batch_size
,
seq_len
,
seq_len
).
astype
(
'float32'
)
np
.
random
.
seed
(
1234
)
mask_data
=
np
.
random
.
rand
(
if
self
.
x_data
is
None
:
batch_size
,
num_heads
,
seq_len
,
seq_len
self
.
x_data
=
np
.
random
.
rand
(
batch_size
,
seq_len
,
seq_len
).
astype
(
).
astype
(
'float32'
)
'float32'
)
self
.
mask_data
=
np
.
random
.
rand
(
batch_size
,
num_heads
,
seq_len
,
seq_len
).
astype
(
'float32'
)
main_prog
=
paddle
.
static
.
Program
()
main_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
1234
main_prog
.
random_seed
=
1234
startup_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
startup_prog
.
random_seed
=
1234
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
data
=
paddle
.
static
.
data
(
data
=
paddle
.
static
.
data
(
...
@@ -150,29 +157,36 @@ class TestFusedAttentionPass(unittest.TestCase):
...
@@ -150,29 +157,36 @@ class TestFusedAttentionPass(unittest.TestCase):
sgd_optimizer
=
paddle
.
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.001
)
sgd_optimizer
=
paddle
.
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.001
)
sgd_optimizer
.
minimize
(
loss
)
sgd_optimizer
.
minimize
(
loss
)
pass_manager
=
PassManager
([
new_pass
(
"fused_attention"
)])
if
use_pass
:
pass_manager
.
apply
([
main_prog
],
[
startup_prog
])
pass_manager
=
PassManager
([
new_pass
(
"fused_attention"
)])
pass_manager
.
apply
([
main_prog
],
[
startup_prog
])
ops
=
main_prog
.
global_block
().
ops
assert
ops
[
2
].
type
==
'fused_attention'
ops
=
main_prog
.
global_block
().
ops
assert
ops
[
3
].
type
==
'reduce_mean'
assert
ops
[
2
].
type
==
'fused_attention'
assert
ops
[
5
].
type
==
'reduce_mean_grad'
assert
ops
[
3
].
type
==
'reduce_mean'
assert
ops
[
6
].
type
==
'fused_attention_grad'
assert
ops
[
5
].
type
==
'reduce_mean_grad'
# two ops for linear, one op for reduce mean
assert
ops
[
6
].
type
==
'fused_attention_grad'
# one fill constant
# two ops for linear, one op for reduce mean
# one op for reduce mean grad, two ops for linear bwd
# one fill constant
# the eighth op should be the optimizer
# one op for reduce mean grad, two ops for linear bwd
assert
ops
[
9
].
type
==
'sgd'
# the eighth op should be the optimizer
assert
ops
[
9
].
type
==
'sgd'
exe
=
paddle
.
static
.
Executor
()
exe
=
paddle
.
static
.
Executor
()
exe
.
run
(
startup_prog
)
exe
.
run
(
startup_prog
)
rst
=
exe
.
run
(
for
i
in
range
(
2
):
main_prog
,
rst
=
exe
.
run
(
feed
=
{
'x'
:
x_data
,
'attn_mask'
:
mask_data
},
main_prog
,
fetch_list
=
[
loss
],
feed
=
{
'x'
:
self
.
x_data
,
'attn_mask'
:
self
.
mask_data
},
)
fetch_list
=
[
loss
],
)
return
rst
def
test_pass
(
self
):
fused_rst
=
self
.
get_rst
(
use_pass
=
True
)
non_fused_rst
=
self
.
get_rst
()
assert
np
.
allclose
(
fused_rst
,
non_fused_rst
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
np
.
random
.
seed
(
0
)
unittest
.
main
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录