提交 fceaabdd 编写于 作者: M minqiyang

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into fix_grpc_destroy_bug

...@@ -31,7 +31,7 @@ script: ...@@ -31,7 +31,7 @@ script:
if [[ "$JOB" != "doc" ]]; then exit 0; fi; if [[ "$JOB" != "doc" ]]; then exit 0; fi;
# For document only # For document only
if [[ "$TRAVIS_PULL_REQUEST" != "false" ]]; then exit 0; fi; if [[ "$TRAVIS_PULL_REQUEST" != "false" ]]; then exit 0; fi;
if [[ "$TRAVIS_BRANCH" != "develop" && ! "$TRAVIS_BRANCH" =~ ^v[[:digit:]]+\.[[:digit:]]+(\.[[:digit:]]+)?(-\S*)?$ ]]; then exit 0; fi; if [[ "$TRAVIS_BRANCH" != "develop" && ! "$TRAVIS_BRANCH" =~ ^v|release/[[:digit:]]+\.[[:digit:]]+(\.[[:digit:]]+)?(-\S*)?$ ]]; then exit 0; fi;
export DEPLOY_DOCS_SH=https://raw.githubusercontent.com/PaddlePaddle/PaddlePaddle.org/master/scripts/deploy/deploy_docs.sh export DEPLOY_DOCS_SH=https://raw.githubusercontent.com/PaddlePaddle/PaddlePaddle.org/master/scripts/deploy/deploy_docs.sh
export DOCS_DIR=`pwd` export DOCS_DIR=`pwd`
cd .. cd ..
......
...@@ -7,7 +7,17 @@ set(ANAKIN_INSTALL_DIR "${THIRD_PARTY_PATH}/install/anakin" CACHE PATH ...@@ -7,7 +7,17 @@ set(ANAKIN_INSTALL_DIR "${THIRD_PARTY_PATH}/install/anakin" CACHE PATH
set(ANAKIN_INCLUDE "${ANAKIN_INSTALL_DIR}" CACHE STRING "root of Anakin header files") set(ANAKIN_INCLUDE "${ANAKIN_INSTALL_DIR}" CACHE STRING "root of Anakin header files")
set(ANAKIN_LIBRARY "${ANAKIN_INSTALL_DIR}" CACHE STRING "path of Anakin library") set(ANAKIN_LIBRARY "${ANAKIN_INSTALL_DIR}" CACHE STRING "path of Anakin library")
set(ANAKIN_COMPILE_EXTRA_FLAGS -Wno-error=unused-variable -Wno-error=format-extra-args -Wno-error=comment -Wno-error=format -Wno-error=switch -Wno-error=return-type -Wno-error=non-virtual-dtor -Wno-reorder -Wno-error=cpp) set(ANAKIN_COMPILE_EXTRA_FLAGS
-Wno-error=unused-variable -Wno-unused-variable
-Wno-error=format-extra-args -Wno-format-extra-args
-Wno-error=comment -Wno-comment
-Wno-error=format -Wno-format
-Wno-error=switch -Wno-switch
-Wno-error=return-type -Wno-return-type
-Wno-error=non-virtual-dtor -Wno-non-virtual-dtor
-Wno-sign-compare
-Wno-reorder
-Wno-error=cpp)
set(ANAKIN_LIBRARY_URL "https://github.com/pangge/Anakin/releases/download/3.0/anakin_release_simple.tar.gz") set(ANAKIN_LIBRARY_URL "https://github.com/pangge/Anakin/releases/download/3.0/anakin_release_simple.tar.gz")
......
# Get the latest git tag. # Get the latest git tag.
set(PADDLE_VERSION $ENV{PADDLE_VERSION}) set(PADDLE_VERSION $ENV{PADDLE_VERSION})
set(tmp_version "HEAD") set(tmp_version "HEAD")
set(TAG_VERSION_REGEX "[0-9]+\\.[0-9]+\\.[0-9]+(\\.(a|b|rc)\\.[0-9]+)?")
set(COMMIT_VERSION_REGEX "[0-9a-f]+[0-9a-f]+[0-9a-f]+[0-9a-f]+[0-9a-f]+")
while ("${PADDLE_VERSION}" STREQUAL "") while ("${PADDLE_VERSION}" STREQUAL "")
execute_process( execute_process(
COMMAND ${GIT_EXECUTABLE} describe --tags --abbrev=0 ${tmp_version} COMMAND ${GIT_EXECUTABLE} describe --tags --abbrev=0 --always ${tmp_version}
WORKING_DIRECTORY ${PADDLE_SOURCE_DIR} WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}
OUTPUT_VARIABLE GIT_TAG_NAME OUTPUT_VARIABLE GIT_TAG_NAME
RESULT_VARIABLE GIT_RESULT RESULT_VARIABLE GIT_RESULT
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE) ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
if (NOT ${GIT_RESULT}) if (NOT ${GIT_RESULT})
# Check the tag is a correct version # Check the tag is a correct version
if (${GIT_TAG_NAME} MATCHES "v[0-9]+\\.[0-9]+\\.[0-9]+(\\.(a|b|rc)\\.[0-9]+)?") if (${GIT_TAG_NAME} MATCHES "${COMMIT_VERSION_REGEX}")
# if no tag was found, set PADDLE_VERSION to latest
set(PADDLE_VERSION "latest")
elseif (${GIT_TAG_NAME} MATCHES "v${TAG_VERSION_REGEX}")
string(REPLACE "v" "" PADDLE_VERSION ${GIT_TAG_NAME}) string(REPLACE "v" "" PADDLE_VERSION ${GIT_TAG_NAME})
else() # otherwise, get the previous git tag name. else() # otherwise, get the previous git tag name.
set(tmp_version "${GIT_TAG_NAME}~1") set(tmp_version "${GIT_TAG_NAME}~1")
......
# Design Doc: Distributed Lookup Table Operator # Design Doc: Distributed Lookup Table Operator
A lookup table operator in PaddlePaddle where the table could be out A distribute lookup table operator in PaddlePaddle where the table could be out
of the memory of a computer. of the memory of a computer.
## Background ## Background
...@@ -24,14 +24,14 @@ memory, so we'd need a distributed storage service, which supports the ...@@ -24,14 +24,14 @@ memory, so we'd need a distributed storage service, which supports the
lookup of rows. lookup of rows.
The following figure illustrates the multiplication of x with two The following figure illustrates the multiplication of x with two
non-zero elements, or say, two symbols, and a lookup table W: non-zero elements, or say two symbols, and a lookup table W:
![lookup table](./src/lookup_table.png) ![lookup table](./src/lookup_table.png)
### The Backward Algorithm ### The Backward Algorithm
The backward algorithm computes W'(x) using W(x). W'(x) has the same The backward algorithm computes W'(x) using W(x). W'(x) has the same
scale of size as W(x) and is much smaller than W. the scale of size as W(x) and is much smaller than W.
To optimize W given W', we can do simple SGD update: To optimize W given W', we can do simple SGD update:
...@@ -44,111 +44,46 @@ $$W = f(W, W')$$ ...@@ -44,111 +44,46 @@ $$W = f(W, W')$$
The following figure illustrates the backward pass of the lookup The following figure illustrates the backward pass of the lookup
operator: ![lookup table training](./src/lookup_table_training.png) operator: ![lookup table training](./src/lookup_table_training.png)
## Distributed Storage Service ## Distributed Lookup Table
### Problem 1: The lookup table may be very large.
The forward algorithm requires a distributed storage service for W.
The backward algorithm prefers that the storage system can apply the In the condition like the search engine and recommendation system, the number of feature Id may be very large, say 100,000,000,000, then for a float value lookup table of size 8, the total size of the table is:
optimization algorithm on W. The following two sections describe two
solutions -- the former doesn't require that the storage service can ```
do optimization, the latter does. 100,000,000,000 * 8 * 4(Bytes) = 2980.23 GB
```
### Storage Service Doesn't Optimize
### Solution: Distributed storage
In this design, we use highly-optimized distributed storage, e.g.,
memcached, as the storage service, and we run the optimization 1. Paddle use [SelectedRows](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/design/modules/selected_rows.md) as the storage format for the lookup table, the lookup table parameter will be split to multi-machine according to the hash of the feature ID, and data will also be split and send to the same machine to prefetch the parameter.
algorithm on parameter servers of PaddlePaddle. The following figure
illustrates the training process. 1. For common parameters, the trainer will get the whole parameter for training, but for the big lookup table, the trainer can not store the whole parameter. Because the input data feature is very sparse, every time we only need a few parameters for training, so we use `prefetch_op` to only prefetch the parameter needed to trainer.
<!-- ### Problem 2. The Id in the lookup table is not sure before training.
Note: please update the following URL when update this digraph.
<img src='https://g.gravizo.com/svg? The feature Id is calculated by the hash function because the feature data source is so large, we can not get all the Id before training. So we can not initialize the table before training.
digraph G {
rankdir="LR"; ### Solution: Id auto growth
subgraph cluster1 {
P1 [label="pserver 1"]; At the beginning of training, paddle only malloc the memory for the lookup table at parameter server side, the Id and it's value will not be initialized. During training, when a parameter server received an Id, if it is already in the lookup table, it will return the existing parameter, if the Id does not exist, paddle will add it into the lookup table and initialize the value for it.
P2 [label="pserver 2"];
T1 [label="trainer 1"]; ### Problem 3: parameter load and save
T2 [label="trainer 2"];
T3 [label="trainer 3"]; For common parameters, paddle use trainer to save and load them. But for distributed lookup table, trainer cannot do this because it's large size.
}
KV [label="memcached"]; ### Solution: Parameter server side save and load
T1 -> P1;
T1 -> P2; Paddle support parameter server side save and load for distribute lookup table. Each machine of parameter servers will only save and load part of the whole table.
T2 -> P1;
T2 -> P2; ## Architecture
T3 -> P1; The whole architecture of the distribute lookup table is as below:
T3 -> P2;
P1 -> KV [color=gray, weight=0.1]; ### Training steps:
KV -> P1 [color=gray, weight=0.1]; 1. Read a batch of data, the data is feature ids.
P2 -> KV [color=gray, weight=0.1]; 1. The input ids will be split by `split_ids_op` with the same hash function of the lookup table.
KV -> P2 [color=gray, weight=0.1]; 1. The `prefetch_op` use the split result to prefetch parameters back from the lookup table.
KV -> T1 [color=gray, weight=0.1]; 1. Run forward-backward to get the gradient of the lookup table.
KV -> T2 [color=gray, weight=0.1]; 1. `split_ids_op` split the gradient and then use `send_op` to the parameter server.
KV -> T3 [color=gray, weight=0.1]; 1. parameter server update the table with the received gradient.
}
) ![distribute lookup table](./src/distributed_lookup_table.jpeg)
'/>
-->
<img src='https://g.gravizo.com/svg?%20digraph%20G%20{%20rankdir=%22LR%22;%20subgraph%20cluster1%20{%20P1%20[label=%22pserver%201%22];%20P2%20[label=%22pserver%202%22];%20T1%20[label=%22trainer%201%22];%20T2%20[label=%22trainer%202%22];%20T3%20[label=%22trainer%203%22];%20}%20KV%20[label=%22memcached%22];%20T1%20-%3E%20P1;%20T1%20-%3E%20P2;%20T2%20-%3E%20P1;%20T2%20-%3E%20P2;%20T3%20-%3E%20P1;%20T3%20-%3E%20P2;%20P1%20-%3E%20KV%20[color=gray,%20weight=0.1];%20KV%20-%3E%20P1%20[color=gray,%20weight=0.1];%20P2%20-%3E%20KV%20[color=gray,%20weight=0.1];%20KV%20-%3E%20P2%20[color=gray,%20weight=0.1];%20KV%20-%3E%20T1%20[color=gray,%20weight=0.1];%20KV%20-%3E%20T2%20[color=gray,%20weight=0.1];%20KV%20-%3E%20T3%20[color=gray,%20weight=0.1];%20}'/>
Each trainer runs the forward and backward passes using their local
data:
1. In the forward pass, when a trainer runs the forward algorithm of a
lookup operator, it retrieves W(x) from the storage service.
1. The trainer computes W'(x) in the backward pass using W(x).
During the global update process:
1. Each trainer uploads its W'(x) to parameter servers.
1. The parameter server runs the optimization algorithm, e.g., the
Adam optimization algorithm, which requires that
1. The parameter server retrieves W(x) from memcached, and
1. The parameter server pushes $\Delta W(x)=f(W(x), lambda \sum_j
W'(x))$ to memcached, where $f$ denotes the optimization
algorithm.
### Storage Service Does Optimize
This design is very similar to the above one, except that the
optimization algorithm $f$ runs on the storage service.
- Pro: parameter servers do not retrieve W(x) from the storage
service, thus saves half network communication.
- Con: the storage service needs to be able to run the optimization
algorithm.
## Distributed Sparse Table in Fluid
For another design, we can implement a distributed sparse table in Fluid,
and don't need to maintain an external storage component while training.
You may need to read Fluid [Distributed Training Architecture](./distributed_architecture.md)
and [Parameter Server](./parameter_server.md) before going on.
![fluid lookup remote table](./src/fluid_lookup_remote_table.png)
Partition a large table into multiple pserver instances
1. `DistributeTranspiler` would split the table partitioned into some small
table blocks with some partitioned algorithms such as
[RoundRobin](https://en.wikipedia.org/wiki/Round-robin_scheduling),
[Hash](https://en.wikipedia.org/wiki/Hash) and etc...
1. For some cases, the range of input `Ids` is very wide and unpredictable, so the sparse
table would be able to fill a new value for the id that didn't appear before with
zero, uniform random or Gaussian distribution.
For each Trainer's training process:
1. In the forward pass, we use `pre-fetch` op to pre-fetch parameter blocks according to the
input `Ids` from PServers instead of the local `lookup_table` op, and then merge the blocks
into a parameter `W`.
1. Compute `GRAD@W'` in the backward pass using the pre-fetched `W` and send it to PServer to
execute the optimize pass.
## Conclusion
Let us do the "storage service does not optimize" solution first, as a
baseline at least, because it is easier to use a well-optimized
distributed storage service like memcached. We can do the "storage
service does optimize" solution later or at the same time, which, if
implemented carefully, should have better performance than the former.
...@@ -28,9 +28,9 @@ ...@@ -28,9 +28,9 @@
### 准备预测模型 ### 准备预测模型
准备预测模型部分,我们以手写数字识别任务为例进行介绍。手写数字识别任务定义了一个含有[两个隐层的简单全连接网络](https://github.com/PaddlePaddle/book/blob/develop/02.recognize_digits/README.cn.md#softmax回归softmax-regression),网络接受一幅图片作为输入,将图片分类到 0 ~ 9 类别标签之一。完整代码可以查看[此目录](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/capi/examples/model_inference/dense) 中的相关脚本。 准备预测模型部分,我们以手写数字识别任务为例进行介绍。手写数字识别任务定义了一个含有[两个隐层的简单全连接网络](https://github.com/PaddlePaddle/book/blob/develop/02.recognize_digits/README.cn.md#softmax回归softmax-regression),网络接受一幅图片作为输入,将图片分类到 0 ~ 9 类别标签之一。完整代码可以查看[此目录](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/legacy/capi/examples/model_inference/dense) 中的相关脚本。
调用C-API开发预测程序需要一个训练好的模型,运行[MNIST手写数字识别目录](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/capi/examples/model_inference/dense)下的[mnist_v2.py](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/capi/examples/model_inference/dense/mnist_v2.py)脚本,在终端执行`python mnist_v2.py`,会使用 PaddlePaddle 内置的 [MNIST 数据集](http://yann.lecun.com/exdb/mnist/)进行训练。训练好的模型默认保存在当前运行目录下的`models`目录中。 调用C-API开发预测程序需要一个训练好的模型,运行[MNIST手写数字识别目录](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/legacy/capi/examples/model_inference/dense)下的[mnist_v2.py](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/legacy/capi/examples/model_inference/dense/mnist_v2.py)脚本,在终端执行`python mnist_v2.py`,会使用 PaddlePaddle 内置的 [MNIST 数据集](http://yann.lecun.com/exdb/mnist/)进行训练。训练好的模型默认保存在当前运行目录下的`models`目录中。
下面,我们将训练结束后存储下来的模型转换成预测模型。 下面,我们将训练结束后存储下来的模型转换成预测模型。
...@@ -48,7 +48,7 @@ ...@@ -48,7 +48,7 @@
dump_v2_config(predict, "trainer_config.bin", True) dump_v2_config(predict, "trainer_config.bin", True)
``` ```
对[手写数字识别](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/capi/examples/model_inference/dense)这个示例,[`mnist_v2.py`](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/capi/examples/model_inference/dense/mnist_v2.py)脚本集成了序列化神经网络结构的过程,可以直接运行 `python mnist_v2.py --task dump_config` 对神经网络结构进行序列化,结果会写入当前运行目录下的`trainer_config.bin`文件中。 对[手写数字识别](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/legacy/capi/examples/model_inference/dense)这个示例,[`mnist_v2.py`](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/legacy/capi/examples/model_inference/dense/mnist_v2.py)脚本集成了序列化神经网络结构的过程,可以直接运行 `python mnist_v2.py --task dump_config` 对神经网络结构进行序列化,结果会写入当前运行目录下的`trainer_config.bin`文件中。
使用这种方式,需要**在运行时将神经网络的多个可学习参数放在同一个目录中**,C-API可以通过分别指定序列化后的网络结构文件和参数目录来加载训练好的模型。 使用这种方式,需要**在运行时将神经网络的多个可学习参数放在同一个目录中**,C-API可以通过分别指定序列化后的网络结构文件和参数目录来加载训练好的模型。
...@@ -68,7 +68,7 @@ ...@@ -68,7 +68,7 @@
merge_v2_model(net, param_file, output_file) merge_v2_model(net, param_file, output_file)
``` ```
对[手写数字识别](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/capi/examples/model_inference/dense)这个示例,可直接运行 `python` [merge_v2_model.py](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/capi/examples/model_inference/dense/merge_v2_model.py)。序列化结果会写入当前运行目录下的`output.paddle.model`文件中。使用这种方式,运行时C-API可以通过指定`output.paddle.model`文件的路径来加载预测模型。 对[手写数字识别](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/legacy/capi/examples/model_inference/dense)这个示例,可直接运行 `python` [merge_v2_model.py](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/legacy/capi/examples/model_inference/dense/merge_v2_model.py)。序列化结果会写入当前运行目录下的`output.paddle.model`文件中。使用这种方式,运行时C-API可以通过指定`output.paddle.model`文件的路径来加载预测模型。
#### 注意事项 #### 注意事项
1. 为使用C-API,在调用`dump_v2_config`序列化神经网络结构时,参数`binary`必须指定为`True` 1. 为使用C-API,在调用`dump_v2_config`序列化神经网络结构时,参数`binary`必须指定为`True`
...@@ -77,10 +77,10 @@ ...@@ -77,10 +77,10 @@
### 编写预测代码 ### 编写预测代码
预测代码更多详细示例代码请参考[C-API使用示例](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/capi/examples/model_inference) 目录下的代码示例。这一节对图1中预测代码编写的5个步骤进行介绍和说明。 预测代码更多详细示例代码请参考[C-API使用示例](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/legacy/capi/examples/model_inference) 目录下的代码示例。这一节对图1中预测代码编写的5个步骤进行介绍和说明。
#### step 1. 初始化PaddlePaddle运行环境 #### step 1. 初始化PaddlePaddle运行环境
第一步需调用[`paddle_init`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/capi/main.h#L27) 初始化PaddlePaddle运行环境,该接口接受两个参数:参数的个数和参数列表。 第一步需调用[`paddle_init`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/legacy/capi/main.h#L27) 初始化PaddlePaddle运行环境,该接口接受两个参数:参数的个数和参数列表。
#### step2. 加载模型 #### step2. 加载模型
...@@ -88,8 +88,8 @@ ...@@ -88,8 +88,8 @@
概念上,在 PaddlePaddle 内部,一个GradientMachine类的对象管理着一组计算层(PaddlePaddle Layers)来完成前向和反向计算,并处理与之相关的所有细节。在调用C-API预测时,只需进行前向计算而无需调用反向计算。这篇文档之后部分会使用`gradient machine`来特指调用PaddlePaddle C-API创建的GradientMachine类的对象。每一个 `gradient machine` 都会管理维护一份训练好的模型,下面是C-API提供的,两种常用的模型加载方式: 概念上,在 PaddlePaddle 内部,一个GradientMachine类的对象管理着一组计算层(PaddlePaddle Layers)来完成前向和反向计算,并处理与之相关的所有细节。在调用C-API预测时,只需进行前向计算而无需调用反向计算。这篇文档之后部分会使用`gradient machine`来特指调用PaddlePaddle C-API创建的GradientMachine类的对象。每一个 `gradient machine` 都会管理维护一份训练好的模型,下面是C-API提供的,两种常用的模型加载方式:
1. 调用[`paddle_gradient_machine_load_parameter_from_disk`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/capi/gradient_machine.h#L61)接口,从磁盘加载预测模型。这时`gradient machine`会独立拥有一份训练好的模型; 1. 调用[`paddle_gradient_machine_load_parameter_from_disk`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/legacy/capi/gradient_machine.h#L61)接口,从磁盘加载预测模型。这时`gradient machine`会独立拥有一份训练好的模型;
1. 调用[`paddle_gradient_machine_create_shared_param`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/capi/gradient_machine.h#L88)接口,与其它`gradient machine`的共享已经加载的预测模型。这种情况多出现在使用多线程预测时,通过多个线程共享同一个模型来减少内存开销。可参考[此示例](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/capi/examples/model_inference/multi_thread/main.c) 1. 调用[`paddle_gradient_machine_create_shared_param`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/legacy/capi/gradient_machine.h#L88)接口,与其它`gradient machine`的共享已经加载的预测模型。这种情况多出现在使用多线程预测时,通过多个线程共享同一个模型来减少内存开销。可参考[此示例](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/legacy/capi/examples/model_inference/multi_thread/main.c)
- 注意事项 - 注意事项
...@@ -117,7 +117,7 @@ C-API支持的所有输入数据类型和他们的组织方式,请参考“输 ...@@ -117,7 +117,7 @@ C-API支持的所有输入数据类型和他们的组织方式,请参考“输
#### step 4. 前向计算 #### step 4. 前向计算
完成上述准备之后,通过调用 [`paddle_gradient_machine_forward`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/capi/gradient_machine.h#L73) 接口完成神经网络的前向计算。 完成上述准备之后,通过调用 [`paddle_gradient_machine_forward`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/legacy/capi/gradient_machine.h#L73) 接口完成神经网络的前向计算。
#### step 5. 清理 #### step 5. 清理
......
...@@ -46,9 +46,14 @@ cc_library(paddle_inference_api ...@@ -46,9 +46,14 @@ cc_library(paddle_inference_api
SRCS paddle_inference_api.cc paddle_inference_api_impl.cc SRCS paddle_inference_api.cc paddle_inference_api_impl.cc
DEPS ${FLUID_CORE_MODULES} ${GLOB_OP_LIB}) DEPS ${FLUID_CORE_MODULES} ${GLOB_OP_LIB})
# Here the shared library doesn't depend on other fluid libraries, or double free will occur.
cc_library(paddle_inference_api_shared SHARED cc_library(paddle_inference_api_shared SHARED
SRCS paddle_inference_api.cc paddle_inference_api_impl.cc SRCS paddle_inference_api.cc paddle_inference_api_impl.cc)
DEPS ${FLUID_CORE_MODULES} ${GLOB_OP_LIB}) set_target_properties(paddle_inference_api_shared PROPERTIES OUTPUT_NAME paddle_inference_api)
if(NOT APPLE)
set(LINK_FLAGS "-fPIC -fvisibility=hidden")
set_target_properties(paddle_inference_api_shared PROPERTIES LINK_FLAGS "${LINK_FLAGS}")
endif()
cc_test(test_paddle_inference_api cc_test(test_paddle_inference_api
SRCS test_paddle_inference_api.cc SRCS test_paddle_inference_api.cc
......
...@@ -23,7 +23,6 @@ int PaddleDtypeSize(PaddleDType dtype) { ...@@ -23,7 +23,6 @@ int PaddleDtypeSize(PaddleDType dtype) {
case PaddleDType::INT64: case PaddleDType::INT64:
return sizeof(int64_t); return sizeof(int64_t);
default: default:
//
assert(false); assert(false);
return -1; return -1;
} }
......
...@@ -249,7 +249,7 @@ void MainThreadsImageClassification(bool use_gpu) { ...@@ -249,7 +249,7 @@ void MainThreadsImageClassification(bool use_gpu) {
const size_t len = local_outputs[0].data.length(); const size_t len = local_outputs[0].data.length();
float* data = static_cast<float*>(local_outputs[0].data.data()); float* data = static_cast<float*>(local_outputs[0].data.data());
float* ref_data = refs[tid].data<float>(); float* ref_data = refs[tid].data<float>();
EXPECT_EQ(refs[tid].numel(), len / sizeof(float)); EXPECT_EQ((size_t)refs[tid].numel(), len / sizeof(float));
for (int i = 0; i < refs[tid].numel(); ++i) { for (int i = 0; i < refs[tid].numel(); ++i) {
EXPECT_NEAR(ref_data[i], data[i], 1e-3); EXPECT_NEAR(ref_data[i], data[i], 1e-3);
} }
......
...@@ -27,6 +27,7 @@ cc_test(lod_tensor_test SRCS lod_tensor_test.cc DEPS lod_tensor memory) ...@@ -27,6 +27,7 @@ cc_test(lod_tensor_test SRCS lod_tensor_test.cc DEPS lod_tensor memory)
nv_test(lod_tensor_gpu_test SRCS lod_tensor_test.cu DEPS lod_tensor) nv_test(lod_tensor_gpu_test SRCS lod_tensor_test.cu DEPS lod_tensor)
cc_library(reader SRCS reader.cc DEPS lod_tensor ddim) cc_library(reader SRCS reader.cc DEPS lod_tensor ddim)
cc_test(reader_test SRCS reader_test.cc DEPS reader)
cc_test(variable_test SRCS variable_test.cc) cc_test(variable_test SRCS variable_test.cc)
......
...@@ -21,8 +21,8 @@ namespace framework { ...@@ -21,8 +21,8 @@ namespace framework {
// a static local variable is already being initialized. // a static local variable is already being initialized.
// https://stackoverflow.com/questions/11711920/how-to-implement-multithread-safe-singleton-in-c11-without-using-mutex // https://stackoverflow.com/questions/11711920/how-to-implement-multithread-safe-singleton-in-c11-without-using-mutex
OpInfoMap& OpInfoMap::Instance() { OpInfoMap& OpInfoMap::Instance() {
static OpInfoMap* g_op_info_map = new OpInfoMap(); static OpInfoMap g_op_info_map;
return *g_op_info_map; return g_op_info_map;
} }
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
...@@ -633,6 +633,16 @@ void OperatorWithKernel::RunImpl(const Scope& scope, ...@@ -633,6 +633,16 @@ void OperatorWithKernel::RunImpl(const Scope& scope,
VLOG(3) << "expected_kernel_key:" << expected_kernel_key; VLOG(3) << "expected_kernel_key:" << expected_kernel_key;
auto kernel_iter = kernels.find(expected_kernel_key); auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
// workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
if (kernel_iter == kernels.end() &&
expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
expected_kernel_key.library_type_ = LibraryType::kPlain;
expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
kernel_iter = kernels.find(expected_kernel_key);
}
#endif
if (kernel_iter == kernels.end()) { if (kernel_iter == kernels.end()) {
PADDLE_THROW("op %s does not have kernel for %s", type_, PADDLE_THROW("op %s does not have kernel for %s", type_,
KernelTypeToString(expected_kernel_key)); KernelTypeToString(expected_kernel_key));
......
...@@ -13,29 +13,61 @@ ...@@ -13,29 +13,61 @@
// limitations under the License. // limitations under the License.
#include "paddle/fluid/framework/reader.h" #include "paddle/fluid/framework/reader.h"
#include <deque>
namespace paddle { namespace paddle {
namespace framework { namespace framework {
ReaderBase::~ReaderBase() {}
FileReader::FileReader(const std::vector<DDim> &dims) : dims_(dims) {} void ReaderBase::ReadNext(std::vector<LoDTensor> *out) {
std::lock_guard<std::mutex> lock(mu_);
void FileReader::ReadNext(std::vector<LoDTensor> *out) { PADDLE_ENFORCE_EQ(status_, ReaderStatus::kRunning);
ReadNextImpl(out); ReadNextImpl(out);
if (out->empty()) { }
return;
}
PADDLE_ENFORCE_EQ(out->size(), dims_.size()); void ReaderBase::InsertDecoratedReader(
for (size_t i = 0; i < dims_.size(); ++i) { const std::shared_ptr<ReaderBase> &decorated_reader) {
auto &actual = (*out)[i].dims(); std::lock_guard<std::mutex> guard(mu_);
auto &expect = dims_[i]; decorated_readers_.emplace_back(decorated_reader);
}
PADDLE_ENFORCE_EQ(actual.size(), expect.size()); std::unordered_set<ReaderBase *> ReaderBase::GetEndPoints() {
for (int j = 0; j < actual.size(); ++j) { std::unordered_set<ReaderBase *> result;
// PADDLE_ENFORCE(actual[i] == expect[i] || expect[i] == -1); std::deque<ReaderBase *> queue;
queue.emplace_back(this);
while (!queue.empty()) { // BFS search
auto *front = queue.front();
queue.pop_front();
if (front->decorated_readers_.empty()) {
result.emplace(front);
} else {
for (auto &reader : front->decorated_readers_) {
if (auto *reader_ptr = reader.lock().get()) {
queue.emplace_back(reader_ptr);
}
}
} }
} }
return result;
} }
void ReaderBase::Shutdown() {
std::lock_guard<std::mutex> lock(mu_);
if (status_ != ReaderStatus::kStopped) {
ShutdownImpl();
status_ = ReaderStatus::kStopped;
}
}
void ReaderBase::Start() {
std::lock_guard<std::mutex> lock(mu_);
if (status_ != ReaderStatus::kRunning) {
StartImpl();
status_ = ReaderStatus::kRunning;
}
}
ReaderBase::~ReaderBase() { Shutdown(); }
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
...@@ -15,6 +15,7 @@ ...@@ -15,6 +15,7 @@
#pragma once #pragma once
#include <memory> #include <memory>
#include <unordered_set>
#include <vector> #include <vector>
#include "paddle/fluid/framework/ddim.h" #include "paddle/fluid/framework/ddim.h"
...@@ -24,61 +25,116 @@ ...@@ -24,61 +25,116 @@
namespace paddle { namespace paddle {
namespace framework { namespace framework {
enum ReaderStatus { kRunning, kStopped };
class ReaderBase { class ReaderBase {
public: public:
virtual void ReadNext(std::vector<LoDTensor>* out) = 0; void ReadNext(std::vector<LoDTensor>* out);
void Shutdown();
virtual void ReInit() = 0; void Start();
// Return the readers which are the end of decorating chain. Basically
// they are readers just before read op.
std::unordered_set<ReaderBase*> GetEndPoints();
virtual ~ReaderBase(); virtual ~ReaderBase();
protected:
virtual void ReadNextImpl(std::vector<LoDTensor>* out) = 0;
virtual void ShutdownImpl() {}
virtual void StartImpl() {}
ReaderStatus status_{kRunning};
mutable std::mutex mu_;
private:
friend class DecoratedReader;
// These methods can be only invoked inside DecoratedReader to record the
// decorating chain.
void InsertDecoratedReader(
const std::shared_ptr<ReaderBase>& decorated_reader);
// A set of which readers that decorated this reader.
std::vector<std::weak_ptr<ReaderBase>> decorated_readers_;
}; };
class DecoratedReader : public ReaderBase { class DecoratedReader : public ReaderBase,
public std::enable_shared_from_this<DecoratedReader> {
public: public:
explicit DecoratedReader(const std::shared_ptr<ReaderBase>& reader) explicit DecoratedReader(const std::shared_ptr<ReaderBase>& reader)
: ReaderBase(), reader_(reader) { : ReaderBase(), reader_(reader) {
PADDLE_ENFORCE_NOT_NULL(reader_); PADDLE_ENFORCE_NOT_NULL(reader_);
} }
void ReInit() override { reader_->ReInit(); } void RegisterDecorateChain() {
reader_->InsertDecoratedReader(shared_from_this());
}
protected: protected:
std::shared_ptr<ReaderBase> reader_; void ShutdownImpl() override { reader_->Shutdown(); }
};
class FileReader : public ReaderBase {
public:
explicit FileReader(const std::vector<DDim>& dims);
void ReadNext(std::vector<LoDTensor>* out) override;
protected: void StartImpl() override { reader_->Start(); }
virtual void ReadNextImpl(std::vector<LoDTensor>* out) = 0;
private: std::shared_ptr<ReaderBase> reader_;
std::vector<DDim> dims_;
}; };
// FileReader is just a conceptual class.
class FileReader : public ReaderBase {};
// The ReaderHolder is used as reader' unified wrapper, // The ReaderHolder is used as reader' unified wrapper,
// making it easier to access different type reader in Variables. // making it easier to access different type reader in Variables.
class ReaderHolder { class ReaderHolder {
public: public:
void Reset(ReaderBase* reader) { reader_.reset(reader); } template <typename T>
void Reset(const std::shared_ptr<T>& reader) {
auto reader_base = std::dynamic_pointer_cast<ReaderBase>(reader);
PADDLE_ENFORCE_NOT_NULL(reader_base);
reader_ = reader_base;
}
std::shared_ptr<ReaderBase> Get() const { return reader_; } const std::shared_ptr<ReaderBase>& Get() const { return reader_; }
void ReadNext(std::vector<LoDTensor>* out) { void ReadNext(std::vector<LoDTensor>* out) {
PADDLE_ENFORCE_NOT_NULL(reader_); PADDLE_ENFORCE_NOT_NULL(reader_);
reader_->ReadNext(out); reader_->ReadNext(out);
} }
void ReInit() {
void ResetAll() {
auto end_readers = reader_->GetEndPoints();
for (auto* reader : end_readers) {
reader->Shutdown();
}
for (auto* reader : end_readers) {
reader->Start();
}
}
void Shutdown() {
PADDLE_ENFORCE_NOT_NULL(reader_);
reader_->Shutdown();
}
void Start() {
PADDLE_ENFORCE_NOT_NULL(reader_); PADDLE_ENFORCE_NOT_NULL(reader_);
reader_->ReInit(); reader_->Start();
} }
operator const std::shared_ptr<ReaderBase>&() const { return this->reader_; }
private: private:
std::shared_ptr<ReaderBase> reader_; std::shared_ptr<ReaderBase> reader_;
}; };
template <typename T, typename... ARGS>
inline std::shared_ptr<DecoratedReader> MakeDecoratedReader(ARGS&&... args) {
std::shared_ptr<DecoratedReader> reader(new T(std::forward<ARGS>(args)...));
reader->RegisterDecorateChain();
return reader;
}
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/reader.h"
#include <memory>
#include "gtest/gtest.h"
class StubDecoratedReader : public paddle::framework::DecoratedReader {
public:
explicit StubDecoratedReader(const std::shared_ptr<ReaderBase> &reader)
: DecoratedReader(reader) {}
void ReadNextImpl(std::vector<paddle::framework::LoDTensor> *out) override {}
};
class StubRootReader : public paddle::framework::ReaderBase {
public:
void ReadNextImpl(std::vector<paddle::framework::LoDTensor> *out) override {}
};
TEST(READER, decorate_chain) {
auto root = std::make_shared<StubRootReader>();
auto end_point1 =
paddle::framework::MakeDecoratedReader<StubDecoratedReader>(root);
auto end_point2 =
paddle::framework::MakeDecoratedReader<StubDecoratedReader>(root);
{
auto endpoints = root->GetEndPoints();
ASSERT_EQ(endpoints.size(), 2U);
ASSERT_NE(endpoints.count(end_point1.get()), 0);
ASSERT_NE(endpoints.count(end_point2.get()), 0);
}
{
auto end_point3 =
paddle::framework::MakeDecoratedReader<StubDecoratedReader>(root);
ASSERT_EQ(root->GetEndPoints().size(), 3U);
}
{ ASSERT_EQ(root->GetEndPoints().size(), 2U); }
}
...@@ -27,7 +27,7 @@ TEST_F(DFG_Tester, Init) { ...@@ -27,7 +27,7 @@ TEST_F(DFG_Tester, Init) {
DataFlowGraph graph; DataFlowGraph graph;
pass.Run(&graph); pass.Run(&graph);
// Analysis is sensitive to ProgramDesc, careful to change the original model. // Analysis is sensitive to ProgramDesc, careful to change the original model.
ASSERT_EQ(graph.nodes.size(), 37); ASSERT_EQ(graph.nodes.size(), 37UL);
pass.Finalize(); pass.Finalize();
LOG(INFO) << '\n' << graph.DotString(); LOG(INFO) << '\n' << graph.DotString();
} }
......
...@@ -82,7 +82,7 @@ TEST_F(DFG_Tester, Fuse) { ...@@ -82,7 +82,7 @@ TEST_F(DFG_Tester, Fuse) {
// At least one nodes should be deleted. // At least one nodes should be deleted.
ASSERT_EQ(dfg.nodes.size(), count0 + 1); // added a new FunctionBlock ASSERT_EQ(dfg.nodes.size(), count0 + 1); // added a new FunctionBlock
ASSERT_EQ(6UL, count1); ASSERT_EQ(6, count1);
} }
} // namespace analysis } // namespace analysis
......
...@@ -19,8 +19,9 @@ namespace paddle { ...@@ -19,8 +19,9 @@ namespace paddle {
namespace memory { namespace memory {
namespace detail { namespace detail {
BuddyAllocator::BuddyAllocator(SystemAllocator* system_allocator, BuddyAllocator::BuddyAllocator(
size_t min_chunk_size, size_t max_chunk_size) std::unique_ptr<SystemAllocator> system_allocator, size_t min_chunk_size,
size_t max_chunk_size)
: min_chunk_size_(min_chunk_size), : min_chunk_size_(min_chunk_size),
max_chunk_size_(max_chunk_size), max_chunk_size_(max_chunk_size),
cache_(system_allocator->UseGpu()), cache_(system_allocator->UseGpu()),
......
...@@ -14,6 +14,7 @@ limitations under the License. */ ...@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once #pragma once
#include <memory>
#include <mutex> // NOLINT #include <mutex> // NOLINT
#include <set> #include <set>
#include <tuple> #include <tuple>
...@@ -32,8 +33,8 @@ namespace detail { ...@@ -32,8 +33,8 @@ namespace detail {
class BuddyAllocator { class BuddyAllocator {
public: public:
BuddyAllocator(SystemAllocator* system_allocator, size_t min_chunk_size, BuddyAllocator(std::unique_ptr<SystemAllocator> system_allocator,
size_t max_chunk_size); size_t min_chunk_size, size_t max_chunk_size);
~BuddyAllocator(); ~BuddyAllocator();
...@@ -103,7 +104,7 @@ class BuddyAllocator { ...@@ -103,7 +104,7 @@ class BuddyAllocator {
private: private:
/*! Allocate CPU/GPU memory from system */ /*! Allocate CPU/GPU memory from system */
SystemAllocator* system_allocator_; std::unique_ptr<SystemAllocator> system_allocator_;
std::mutex mutex_; std::mutex mutex_;
}; };
......
...@@ -12,6 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,6 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include <vector>
#include "paddle/fluid/memory/malloc.h" #include "paddle/fluid/memory/malloc.h"
#include "glog/logging.h" #include "glog/logging.h"
...@@ -34,12 +36,15 @@ namespace memory { ...@@ -34,12 +36,15 @@ namespace memory {
using BuddyAllocator = detail::BuddyAllocator; using BuddyAllocator = detail::BuddyAllocator;
BuddyAllocator* GetCPUBuddyAllocator() { BuddyAllocator* GetCPUBuddyAllocator() {
static std::once_flag init_flag;
static detail::BuddyAllocator* a = nullptr; static detail::BuddyAllocator* a = nullptr;
if (a == nullptr) {
a = new detail::BuddyAllocator(new detail::CPUAllocator, std::call_once(init_flag, []() {
platform::CpuMinChunkSize(), a = new detail::BuddyAllocator(
platform::CpuMaxChunkSize()); std::unique_ptr<detail::SystemAllocator>(new detail::CPUAllocator),
} platform::CpuMinChunkSize(), platform::CpuMaxChunkSize());
});
return a; return a;
} }
...@@ -68,27 +73,33 @@ size_t Used<platform::CPUPlace>(platform::CPUPlace place) { ...@@ -68,27 +73,33 @@ size_t Used<platform::CPUPlace>(platform::CPUPlace place) {
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
BuddyAllocator* GetGPUBuddyAllocator(int gpu_id) { BuddyAllocator* GetGPUBuddyAllocator(int gpu_id) {
static BuddyAllocator** as = NULL; static std::once_flag init_flag;
if (as == NULL) { static detail::BuddyAllocator** a_arr = nullptr;
std::call_once(init_flag, [gpu_id]() {
int gpu_num = platform::GetCUDADeviceCount(); int gpu_num = platform::GetCUDADeviceCount();
as = new BuddyAllocator*[gpu_num]; PADDLE_ENFORCE(gpu_id < gpu_num, "gpu_id:%d should < gpu_num:%d", gpu_id,
for (int gpu = 0; gpu < gpu_num; gpu++) { gpu_num);
as[gpu] = nullptr;
a_arr = new BuddyAllocator*[gpu_num];
for (int i = 0; i < gpu_num; i++) {
a_arr[i] = nullptr;
platform::SetDeviceId(i);
a_arr[i] = new BuddyAllocator(
std::unique_ptr<detail::SystemAllocator>(new detail::GPUAllocator(i)),
platform::GpuMinChunkSize(), platform::GpuMaxChunkSize());
VLOG(10) << "\n\nNOTE: each GPU device use "
<< FLAGS_fraction_of_gpu_memory_to_use * 100
<< "% of GPU memory.\n"
<< "You can set GFlags environment variable '"
<< "FLAGS_fraction_of_gpu_memory_to_use"
<< "' to change the fraction of GPU usage.\n\n";
} }
} });
platform::SetDeviceId(gpu_id); platform::SetDeviceId(gpu_id);
if (!as[gpu_id]) { return a_arr[gpu_id];
as[gpu_id] = new BuddyAllocator(new detail::GPUAllocator(gpu_id),
platform::GpuMinChunkSize(),
platform::GpuMaxChunkSize());
VLOG(10) << "\n\nNOTE: each GPU device use "
<< FLAGS_fraction_of_gpu_memory_to_use * 100
<< "% of GPU memory.\n"
<< "You can set GFlags environment variable '"
<< "FLAGS_fraction_of_gpu_memory_to_use"
<< "' to change the fraction of GPU usage.\n\n";
}
return as[gpu_id];
} }
template <> template <>
...@@ -125,12 +136,16 @@ void Free<platform::CUDAPlace>(platform::CUDAPlace place, void* p) { ...@@ -125,12 +136,16 @@ void Free<platform::CUDAPlace>(platform::CUDAPlace place, void* p) {
} }
BuddyAllocator* GetCUDAPinnedBuddyAllocator() { BuddyAllocator* GetCUDAPinnedBuddyAllocator() {
static BuddyAllocator* ba = NULL; static std::once_flag init_flag;
if (ba == NULL) { static BuddyAllocator* ba = nullptr;
ba = new BuddyAllocator(new detail::CUDAPinnedAllocator,
std::call_once(init_flag, []() {
ba = new BuddyAllocator(std::unique_ptr<detail::SystemAllocator>(
new detail::CUDAPinnedAllocator),
platform::CUDAPinnedMinChunkSize(), platform::CUDAPinnedMinChunkSize(),
platform::CUDAPinnedMaxChunkSize()); platform::CUDAPinnedMaxChunkSize());
} });
return ba; return ba;
} }
......
...@@ -216,6 +216,18 @@ class BatchNormKernel<platform::CPUDeviceContext, T> ...@@ -216,6 +216,18 @@ class BatchNormKernel<platform::CPUDeviceContext, T>
saved_mean_e.setZero(); saved_mean_e.setZero();
saved_variance_e.setZero(); saved_variance_e.setZero();
EigenVectorArrayMap<T> running_mean_arr(
mean_out->mutable_data<T>(ctx.GetPlace()), C);
EigenVectorArrayMap<T> running_var_arr(
variance_out->mutable_data<T>(ctx.GetPlace()), C);
if ((N * sample_size) == 1) {
LOG(WARNING) << "Only 1 element in normalization dimension, "
<< "we skip the batch norm calculation, let y = x.";
framework::TensorCopySync(*x, ctx.GetPlace(), y);
return;
}
switch (data_layout) { switch (data_layout) {
case DataLayout::kNCHW: { case DataLayout::kNCHW: {
ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C); ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
...@@ -247,10 +259,6 @@ class BatchNormKernel<platform::CPUDeviceContext, T> ...@@ -247,10 +259,6 @@ class BatchNormKernel<platform::CPUDeviceContext, T>
PADDLE_THROW("Unknown storage order: %s", data_layout_str); PADDLE_THROW("Unknown storage order: %s", data_layout_str);
} }
EigenVectorArrayMap<T> running_mean_arr(
mean_out->mutable_data<T>(ctx.GetPlace()), C);
EigenVectorArrayMap<T> running_var_arr(
variance_out->mutable_data<T>(ctx.GetPlace()), C);
running_mean_arr = running_mean_arr =
running_mean_arr * momentum + saved_mean_e * (1. - momentum); running_mean_arr * momentum + saved_mean_e * (1. - momentum);
running_var_arr = running_var_arr =
...@@ -427,6 +435,11 @@ class BatchNormGradKernel<platform::CPUDeviceContext, T> ...@@ -427,6 +435,11 @@ class BatchNormGradKernel<platform::CPUDeviceContext, T>
d_bias_arr.setZero(); d_bias_arr.setZero();
d_scale_arr.setZero(); d_scale_arr.setZero();
if ((N * sample_size) == 1) {
framework::TensorCopySync(*d_y, ctx.GetPlace(), d_x);
return;
}
const auto scale_inv_var_nhw = scale_arr * inv_var_arr / (N * sample_size); const auto scale_inv_var_nhw = scale_arr * inv_var_arr / (N * sample_size);
switch (data_layout) { switch (data_layout) {
......
...@@ -72,6 +72,9 @@ class BatchNormKernel<platform::CUDADeviceContext, T> ...@@ -72,6 +72,9 @@ class BatchNormKernel<platform::CUDADeviceContext, T>
int N, C, H, W, D; int N, C, H, W, D;
ExtractNCWHD(x_dims, data_layout, &N, &C, &H, &W, &D); ExtractNCWHD(x_dims, data_layout, &N, &C, &H, &W, &D);
auto *y = ctx.Output<Tensor>("Y");
y->mutable_data<T>(ctx.GetPlace());
// ------------------- cudnn descriptors --------------------- // ------------------- cudnn descriptors ---------------------
cudnnTensorDescriptor_t data_desc_; cudnnTensorDescriptor_t data_desc_;
cudnnTensorDescriptor_t bn_param_desc_; cudnnTensorDescriptor_t bn_param_desc_;
...@@ -93,7 +96,7 @@ class BatchNormKernel<platform::CUDADeviceContext, T> ...@@ -93,7 +96,7 @@ class BatchNormKernel<platform::CUDADeviceContext, T>
mode_ = CUDNN_BATCHNORM_SPATIAL; mode_ = CUDNN_BATCHNORM_SPATIAL;
#endif #endif
VLOG(1) << "Setting descriptors."; VLOG(3) << "Setting descriptors.";
std::vector<int> dims; std::vector<int> dims;
std::vector<int> strides; std::vector<int> strides;
if (data_layout == DataLayout::kNCHW) { if (data_layout == DataLayout::kNCHW) {
...@@ -113,11 +116,6 @@ class BatchNormKernel<platform::CUDADeviceContext, T> ...@@ -113,11 +116,6 @@ class BatchNormKernel<platform::CUDADeviceContext, T>
const auto *scale = ctx.Input<Tensor>("Scale"); const auto *scale = ctx.Input<Tensor>("Scale");
const auto *bias = ctx.Input<Tensor>("Bias"); const auto *bias = ctx.Input<Tensor>("Bias");
auto *y = ctx.Output<Tensor>("Y");
// alloc memory
y->mutable_data<T>(ctx.GetPlace());
auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>(); auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
auto handle = dev_ctx.cudnn_handle(); auto handle = dev_ctx.cudnn_handle();
...@@ -162,22 +160,28 @@ class BatchNormKernel<platform::CUDADeviceContext, T> ...@@ -162,22 +160,28 @@ class BatchNormKernel<platform::CUDADeviceContext, T>
functor(dev_ctx, saved_mean, static_cast<BatchNormParamType<T>>(0)); functor(dev_ctx, saved_mean, static_cast<BatchNormParamType<T>>(0));
functor(dev_ctx, saved_variance, static_cast<BatchNormParamType<T>>(0)); functor(dev_ctx, saved_variance, static_cast<BatchNormParamType<T>>(0));
double this_factor = 1. - momentum; if ((N * H * W * D) == 1) {
LOG(WARNING) << "Only 1 element in normalization dimension, "
CUDNN_ENFORCE(platform::dynload::cudnnBatchNormalizationForwardTraining( << "we skip the batch norm calculation, let y = x.";
handle, mode_, CudnnDataType<T>::kOne(), CudnnDataType<T>::kZero(), framework::TensorCopySync(*x, ctx.GetPlace(), y);
data_desc_, x->template data<T>(), data_desc_, } else {
y->template mutable_data<T>(ctx.GetPlace()), bn_param_desc_, double this_factor = 1. - momentum;
scale->template data<BatchNormParamType<T>>(),
bias->template data<BatchNormParamType<T>>(), this_factor, CUDNN_ENFORCE(platform::dynload::cudnnBatchNormalizationForwardTraining(
mean_out->template mutable_data<BatchNormParamType<T>>( handle, mode_, CudnnDataType<T>::kOne(), CudnnDataType<T>::kZero(),
ctx.GetPlace()), data_desc_, x->template data<T>(), data_desc_,
variance_out->template mutable_data<BatchNormParamType<T>>( y->template mutable_data<T>(ctx.GetPlace()), bn_param_desc_,
ctx.GetPlace()), scale->template data<BatchNormParamType<T>>(),
epsilon, saved_mean->template mutable_data<BatchNormParamType<T>>( bias->template data<BatchNormParamType<T>>(), this_factor,
ctx.GetPlace()), mean_out->template mutable_data<BatchNormParamType<T>>(
saved_variance->template mutable_data<BatchNormParamType<T>>( ctx.GetPlace()),
ctx.GetPlace()))); variance_out->template mutable_data<BatchNormParamType<T>>(
ctx.GetPlace()),
epsilon, saved_mean->template mutable_data<BatchNormParamType<T>>(
ctx.GetPlace()),
saved_variance->template mutable_data<BatchNormParamType<T>>(
ctx.GetPlace())));
}
} }
// clean when exit. // clean when exit.
...@@ -209,6 +213,25 @@ class BatchNormGradKernel<platform::CUDADeviceContext, T> ...@@ -209,6 +213,25 @@ class BatchNormGradKernel<platform::CUDADeviceContext, T>
int N, C, H, W, D; int N, C, H, W, D;
ExtractNCWHD(x_dims, data_layout, &N, &C, &H, &W, &D); ExtractNCWHD(x_dims, data_layout, &N, &C, &H, &W, &D);
// init output
auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));
d_x->mutable_data<T>(ctx.GetPlace());
d_scale->mutable_data<T>(ctx.GetPlace());
d_bias->mutable_data<T>(ctx.GetPlace());
auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
if ((N * H * W * D) == 1) {
framework::TensorCopySync(*d_y, ctx.GetPlace(), d_x);
math::SetConstant<platform::CUDADeviceContext, BatchNormParamType<T>>
functor;
functor(dev_ctx, d_scale, static_cast<BatchNormParamType<T>>(0));
functor(dev_ctx, d_bias, static_cast<BatchNormParamType<T>>(0));
return;
}
PADDLE_ENFORCE_EQ(scale->dims().size(), 1UL); PADDLE_ENFORCE_EQ(scale->dims().size(), 1UL);
PADDLE_ENFORCE_EQ(scale->dims()[0], C); PADDLE_ENFORCE_EQ(scale->dims()[0], C);
...@@ -247,21 +270,11 @@ class BatchNormGradKernel<platform::CUDADeviceContext, T> ...@@ -247,21 +270,11 @@ class BatchNormGradKernel<platform::CUDADeviceContext, T>
CUDNN_ENFORCE(platform::dynload::cudnnDeriveBNTensorDescriptor( CUDNN_ENFORCE(platform::dynload::cudnnDeriveBNTensorDescriptor(
bn_param_desc_, data_desc_, mode_)); bn_param_desc_, data_desc_, mode_));
// init output
auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));
d_x->mutable_data<T>(ctx.GetPlace());
d_scale->mutable_data<T>(ctx.GetPlace());
d_bias->mutable_data<T>(ctx.GetPlace());
const auto *saved_mean = ctx.Input<Tensor>("SavedMean"); const auto *saved_mean = ctx.Input<Tensor>("SavedMean");
const auto *saved_var = ctx.Input<Tensor>("SavedVariance"); const auto *saved_var = ctx.Input<Tensor>("SavedVariance");
const void *saved_mean_data = saved_mean->template data<T>(); const void *saved_mean_data = saved_mean->template data<T>();
const void *saved_var_data = saved_var->template data<T>(); const void *saved_var_data = saved_var->template data<T>();
auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
CUDNN_ENFORCE(platform::dynload::cudnnBatchNormalizationBackward( CUDNN_ENFORCE(platform::dynload::cudnnBatchNormalizationBackward(
dev_ctx.cudnn_handle(), mode_, CudnnDataType<T>::kOne(), dev_ctx.cudnn_handle(), mode_, CudnnDataType<T>::kOne(),
CudnnDataType<T>::kZero(), CudnnDataType<T>::kOne(), CudnnDataType<T>::kZero(), CudnnDataType<T>::kOne(),
......
...@@ -205,9 +205,10 @@ class ConditionalBlockGradInferShape : public framework::InferShapeBase { ...@@ -205,9 +205,10 @@ class ConditionalBlockGradInferShape : public framework::InferShapeBase {
context->SetOutputsDim(framework::GradVarName("Params"), context->SetOutputsDim(framework::GradVarName("Params"),
context->GetInputsDim("Params")); context->GetInputsDim("Params"));
} }
PADDLE_ENFORCE(context->HasOutputs(framework::GradVarName("X"))); if (context->HasOutputs(framework::GradVarName("X"))) {
context->SetOutputsDim(framework::GradVarName("X"), context->SetOutputsDim(framework::GradVarName("X"),
context->GetInputsDim("X")); context->GetInputsDim("X"));
}
} }
}; };
......
...@@ -124,8 +124,7 @@ class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -124,8 +124,7 @@ class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
"Tensor<float/double> with shape [N x D]."); "Tensor<float/double> with shape [N x D].");
AddOutput("Y", AddOutput("Y",
"(Tensor, default Tensor<float>), a 2-D tensor with shape " "(Tensor, default Tensor<float>), a 2-D tensor with shape "
"[N x 1]. The cross entropy loss.") "[N x 1]. The cross entropy loss.");
.Reuse("X");
AddAttr<bool>("soft_label", AddAttr<bool>("soft_label",
"(bool, default false), a flag indicating whether to " "(bool, default false), a flag indicating whether to "
"interpretate the given labels as soft labels.") "interpretate the given labels as soft labels.")
......
...@@ -85,7 +85,7 @@ class EltwiseAddMKLDNNKernel : public framework::OpKernel<T> { ...@@ -85,7 +85,7 @@ class EltwiseAddMKLDNNKernel : public framework::OpKernel<T> {
"Wrong layout/format set for X tensor"); "Wrong layout/format set for X tensor");
PADDLE_ENFORCE(y->layout() == DataLayout::kMKLDNN && PADDLE_ENFORCE(y->layout() == DataLayout::kMKLDNN &&
y->format() != memory::format::format_undef, y->format() != memory::format::format_undef,
"Wrong layout/format set for X tensor"); "Wrong layout/format set for Y tensor");
std::vector<int> src_x_tz = framework::vectorize2int(x_dims); std::vector<int> src_x_tz = framework::vectorize2int(x_dims);
std::vector<int> src_y_tz = framework::vectorize2int(y_dims); std::vector<int> src_y_tz = framework::vectorize2int(y_dims);
......
...@@ -44,8 +44,10 @@ class MergeLoDTensorOp : public framework::OperatorBase { ...@@ -44,8 +44,10 @@ class MergeLoDTensorOp : public framework::OperatorBase {
scope.FindVar(Output("Out"))->GetMutable<framework::LoDTensor>(); scope.FindVar(Output("Out"))->GetMutable<framework::LoDTensor>();
auto level = static_cast<size_t>(Attr<int>("level")); auto level = static_cast<size_t>(Attr<int>("level"));
auto &mask_dim = mask.dims(); PADDLE_ENFORCE(in_true.numel() || in_false.numel(),
"Input(InTrue) or Input(InFalse) should be initialized.");
auto &mask_dim = mask.dims();
std::unique_ptr<framework::LoDTensor> cpu_mask{new framework::LoDTensor()}; std::unique_ptr<framework::LoDTensor> cpu_mask{new framework::LoDTensor()};
if (platform::is_cpu_place(mask.place())) { if (platform::is_cpu_place(mask.place())) {
cpu_mask->ShareDataWith(mask); cpu_mask->ShareDataWith(mask);
...@@ -59,19 +61,27 @@ class MergeLoDTensorOp : public framework::OperatorBase { ...@@ -59,19 +61,27 @@ class MergeLoDTensorOp : public framework::OperatorBase {
} }
auto *mask_data = cpu_mask->data<bool>(); auto *mask_data = cpu_mask->data<bool>();
int rank = in_true.dims().size(); platform::Place place = dev_place;
platform::Place place = in_true.place();
std::type_index data_type = in_true.type();
framework::DDim in_true_dims =
framework::slice_ddim(in_true.dims(), 1, rank);
int64_t batch_size = in_true.dims()[0] + in_false.dims()[0]; int64_t batch_size = in_true.dims()[0] + in_false.dims()[0];
auto in_true_dim_vec = framework::vectorize(in_true_dims); std::type_index data_type =
in_true_dim_vec.insert(in_true_dim_vec.begin(), batch_size); in_true.IsInitialized() ? in_true.type() : in_false.type();
int rank;
framework::DDim in_dims;
if (in_true.IsInitialized()) {
rank = in_true.dims().size();
in_dims = framework::slice_ddim(in_true.dims(), 1, rank);
} else {
rank = in_false.dims().size();
in_dims = framework::slice_ddim(in_false.dims(), 1, rank);
}
auto in_dim_vec = framework::vectorize(in_dims);
in_dim_vec.insert(in_dim_vec.begin(), batch_size);
framework::DDim out_dims = framework::make_ddim(in_true_dim_vec); framework::DDim out_dims = framework::make_ddim(in_dim_vec);
out->Resize(out_dims); out->Resize(out_dims);
out->mutable_data(place, data_type); out->mutable_data(place, data_type);
auto *out_lod = out->mutable_lod(); auto *out_lod = out->mutable_lod();
......
...@@ -22,7 +22,6 @@ reader_library(create_batch_reader_op SRCS create_batch_reader_op.cc) ...@@ -22,7 +22,6 @@ reader_library(create_batch_reader_op SRCS create_batch_reader_op.cc)
reader_library(create_recordio_file_reader_op SRCS create_recordio_file_reader_op.cc) reader_library(create_recordio_file_reader_op SRCS create_recordio_file_reader_op.cc)
reader_library(create_double_buffer_reader_op SRCS create_double_buffer_reader_op.cc) reader_library(create_double_buffer_reader_op SRCS create_double_buffer_reader_op.cc)
reader_library(create_multi_pass_reader_op SRCS create_multi_pass_reader_op.cc) reader_library(create_multi_pass_reader_op SRCS create_multi_pass_reader_op.cc)
reader_library(create_threaded_reader_op SRCS create_threaded_reader_op.cc)
reader_library(create_custom_reader_op SRCS create_custom_reader_op.cc) reader_library(create_custom_reader_op SRCS create_custom_reader_op.cc)
reader_library(create_py_reader_op SRCS create_py_reader_op.cc) reader_library(create_py_reader_op SRCS create_py_reader_op.cc)
......
...@@ -20,15 +20,19 @@ namespace reader { ...@@ -20,15 +20,19 @@ namespace reader {
class BatchReader : public framework::DecoratedReader { class BatchReader : public framework::DecoratedReader {
public: public:
BatchReader(const std::shared_ptr<ReaderBase>& reader, int batch_size) BatchReader(const std::shared_ptr<ReaderBase>& reader, int batch_size,
: DecoratedReader(reader), batch_size_(batch_size) { bool discard_leftover)
: DecoratedReader(reader),
batch_size_(batch_size),
discard_leftover_(discard_leftover) {
buffer_.reserve(batch_size_); buffer_.reserve(batch_size_);
} }
void ReadNext(std::vector<framework::LoDTensor>* out) override; void ReadNextImpl(std::vector<framework::LoDTensor>* out) override;
private: private:
int batch_size_; int batch_size_;
bool discard_leftover_;
std::vector<std::vector<framework::LoDTensor>> buffer_; std::vector<std::vector<framework::LoDTensor>> buffer_;
}; };
...@@ -46,8 +50,9 @@ class CreateBatchReaderOp : public framework::OperatorBase { ...@@ -46,8 +50,9 @@ class CreateBatchReaderOp : public framework::OperatorBase {
} }
const auto& underlying_reader = scope.FindVar(Input("UnderlyingReader")) const auto& underlying_reader = scope.FindVar(Input("UnderlyingReader"))
->Get<framework::ReaderHolder>(); ->Get<framework::ReaderHolder>();
out->Reset( out->Reset(framework::MakeDecoratedReader<BatchReader>(
new BatchReader(underlying_reader.Get(), Attr<int>("batch_size"))); underlying_reader, Attr<int>("batch_size"),
Attr<bool>("discard_leftover")));
} }
}; };
...@@ -57,6 +62,10 @@ class CreateBatchReaderOpMaker : public DecoratedReaderMakerBase { ...@@ -57,6 +62,10 @@ class CreateBatchReaderOpMaker : public DecoratedReaderMakerBase {
AddAttr<int>("batch_size", AddAttr<int>("batch_size",
"How many instances the batch reader yields each time.") "How many instances the batch reader yields each time.")
.GreaterThan(0); .GreaterThan(0);
AddAttr<bool>("discard_leftover",
"If true, the leftover instances that are not enough for a "
"new batch will be discarded.")
.SetDefault(true);
AddComment(R"DOC( AddComment(R"DOC(
CreateBatchReader Operator CreateBatchReader Operator
...@@ -66,7 +75,7 @@ class CreateBatchReaderOpMaker : public DecoratedReaderMakerBase { ...@@ -66,7 +75,7 @@ class CreateBatchReaderOpMaker : public DecoratedReaderMakerBase {
} }
}; };
void BatchReader::ReadNext(std::vector<framework::LoDTensor>* out) { void BatchReader::ReadNextImpl(std::vector<framework::LoDTensor>* out) {
buffer_.clear(); buffer_.clear();
buffer_.reserve(batch_size_); buffer_.reserve(batch_size_);
for (int i = 0; i < batch_size_; ++i) { for (int i = 0; i < batch_size_; ++i) {
...@@ -77,6 +86,9 @@ void BatchReader::ReadNext(std::vector<framework::LoDTensor>* out) { ...@@ -77,6 +86,9 @@ void BatchReader::ReadNext(std::vector<framework::LoDTensor>* out) {
break; break;
} }
} }
if (discard_leftover_ && buffer_.size() < batch_size_) {
buffer_.clear();
}
// Concat instances // Concat instances
out->clear(); out->clear();
if (buffer_.empty()) { if (buffer_.empty()) {
......
...@@ -33,7 +33,7 @@ class CustomReader : public framework::DecoratedReader { ...@@ -33,7 +33,7 @@ class CustomReader : public framework::DecoratedReader {
source_var_names_(source_var_names), source_var_names_(source_var_names),
sink_var_names_(sink_var_names) {} sink_var_names_(sink_var_names) {}
void ReadNext(std::vector<framework::LoDTensor>* out) override; void ReadNextImpl(std::vector<framework::LoDTensor>* out) override;
private: private:
const framework::ProgramDesc program_; const framework::ProgramDesc program_;
...@@ -60,10 +60,10 @@ class CreateCustomReaderOp : public framework::OperatorBase { ...@@ -60,10 +60,10 @@ class CreateCustomReaderOp : public framework::OperatorBase {
} }
const auto& underlying_reader = scope.FindVar(Input("UnderlyingReader")) const auto& underlying_reader = scope.FindVar(Input("UnderlyingReader"))
->Get<framework::ReaderHolder>(); ->Get<framework::ReaderHolder>();
out->Reset( out->Reset(framework::MakeDecoratedReader<CustomReader>(
new CustomReader(underlying_reader.Get(), *sub_block, underlying_reader, *sub_block,
Attr<std::vector<std::string>>("source_var_names"), Attr<std::vector<std::string>>("source_var_names"),
Attr<std::vector<std::string>>("sink_var_names"))); Attr<std::vector<std::string>>("sink_var_names")));
} }
}; };
...@@ -143,7 +143,7 @@ class CustomReaderInferVarType : public framework::VarTypeInference { ...@@ -143,7 +143,7 @@ class CustomReaderInferVarType : public framework::VarTypeInference {
} }
}; };
void CustomReader::ReadNext(std::vector<framework::LoDTensor>* out) { void CustomReader::ReadNextImpl(std::vector<framework::LoDTensor>* out) {
out->clear(); out->clear();
std::vector<framework::LoDTensor> underlying_outs; std::vector<framework::LoDTensor> underlying_outs;
reader_->ReadNext(&underlying_outs); reader_->ReadNext(&underlying_outs);
......
...@@ -23,13 +23,13 @@ namespace reader { ...@@ -23,13 +23,13 @@ namespace reader {
// 'Double buffer' means we shall maintain two batches of input data at the same // 'Double buffer' means we shall maintain two batches of input data at the same
// time. So the kCacheSize shoul be at least 2. // time. So the kCacheSize shoul be at least 2.
static constexpr size_t kCacheSize = 5; static constexpr size_t kCacheSize = 3;
// There will be two bacthes out of the channel during training: // There will be two bacthes out of the channel during training:
// 1. the one waiting to be sent to the channel // 1. the one waiting to be sent to the channel
// 2. the one just be received from the channel, which is also being used by // 2. the one just be received from the channel, which is also being used by
// subsequent operators. // subsequent operators.
// So the channel size should be kChacheSize - 2 // So the channel size should be kChacheSize - 2
static constexpr size_t kChannelSize = 3; // kCacheSize - 2 static constexpr size_t kChannelSize = 1; // kCacheSize - 2
class DoubleBufferReader : public framework::DecoratedReader { class DoubleBufferReader : public framework::DecoratedReader {
public: public:
...@@ -50,12 +50,21 @@ class DoubleBufferReader : public framework::DecoratedReader { ...@@ -50,12 +50,21 @@ class DoubleBufferReader : public framework::DecoratedReader {
StartPrefetcher(); StartPrefetcher();
} }
void ReadNext(std::vector<framework::LoDTensor>* out) override; void ReadNextImpl(std::vector<framework::LoDTensor>* out) override;
void ReInit() override;
~DoubleBufferReader() { EndPrefetcher(); } ~DoubleBufferReader() { EndPrefetcher(); }
private: private:
void ShutdownImpl() override {
EndPrefetcher();
reader_->Shutdown();
}
void StartImpl() override {
reader_->Start();
StartPrefetcher();
}
void StartPrefetcher() { void StartPrefetcher() {
channel_ = new reader::BlockingQueue<size_t>(kChannelSize); channel_ = new reader::BlockingQueue<size_t>(kChannelSize);
prefetcher_ = std::thread([this] { PrefetchThreadFunc(); }); prefetcher_ = std::thread([this] { PrefetchThreadFunc(); });
...@@ -109,7 +118,8 @@ class CreateDoubleBufferReaderOp : public framework::OperatorBase { ...@@ -109,7 +118,8 @@ class CreateDoubleBufferReaderOp : public framework::OperatorBase {
place = platform::CUDAPlace(static_cast<int>(num)); place = platform::CUDAPlace(static_cast<int>(num));
} }
out->Reset(new DoubleBufferReader(underlying_reader.Get(), place)); out->Reset(framework::MakeDecoratedReader<DoubleBufferReader>(
underlying_reader, place));
} }
}; };
...@@ -136,7 +146,7 @@ class CreateDoubleBufferReaderOpMaker : public DecoratedReaderMakerBase { ...@@ -136,7 +146,7 @@ class CreateDoubleBufferReaderOpMaker : public DecoratedReaderMakerBase {
} }
}; };
void DoubleBufferReader::ReadNext(std::vector<framework::LoDTensor>* out) { void DoubleBufferReader::ReadNextImpl(std::vector<framework::LoDTensor>* out) {
size_t cached_tensor_id; size_t cached_tensor_id;
if (channel_->Receive(&cached_tensor_id)) { if (channel_->Receive(&cached_tensor_id)) {
if (platform::is_gpu_place(place_)) { if (platform::is_gpu_place(place_)) {
...@@ -150,12 +160,6 @@ void DoubleBufferReader::ReadNext(std::vector<framework::LoDTensor>* out) { ...@@ -150,12 +160,6 @@ void DoubleBufferReader::ReadNext(std::vector<framework::LoDTensor>* out) {
} }
} }
void DoubleBufferReader::ReInit() {
reader_->ReInit();
EndPrefetcher();
StartPrefetcher();
}
void DoubleBufferReader::PrefetchThreadFunc() { void DoubleBufferReader::PrefetchThreadFunc() {
VLOG(5) << "A new prefetch thread starts."; VLOG(5) << "A new prefetch thread starts.";
size_t cached_tensor_id = 0; size_t cached_tensor_id = 0;
......
...@@ -24,23 +24,22 @@ class MultiPassReader : public framework::DecoratedReader { ...@@ -24,23 +24,22 @@ class MultiPassReader : public framework::DecoratedReader {
MultiPassReader(const std::shared_ptr<ReaderBase>& reader, int pass_num) MultiPassReader(const std::shared_ptr<ReaderBase>& reader, int pass_num)
: DecoratedReader(reader), pass_num_(pass_num), pass_count_(0) {} : DecoratedReader(reader), pass_num_(pass_num), pass_count_(0) {}
void ReadNext(std::vector<framework::LoDTensor>* out) override { void ReadNextImpl(std::vector<framework::LoDTensor>* out) override {
reader_->ReadNext(out); reader_->ReadNext(out);
if (out->empty()) { if (out->empty() && pass_count_ < pass_num_ - 1) {
reader_->Shutdown();
reader_->Start();
reader_->ReadNext(out);
++pass_count_; ++pass_count_;
if (pass_count_ < pass_num_) {
reader_->ReInit();
reader_->ReadNext(out);
}
} }
} }
void ReInit() override { private:
void StartImpl() override {
pass_count_ = 0; pass_count_ = 0;
reader_->ReInit(); reader_->Start();
} }
private:
int pass_num_; int pass_num_;
mutable int pass_count_; mutable int pass_count_;
}; };
...@@ -60,7 +59,8 @@ class CreateMultiPassReaderOp : public framework::OperatorBase { ...@@ -60,7 +59,8 @@ class CreateMultiPassReaderOp : public framework::OperatorBase {
const auto& underlying_reader = scope.FindVar(Input("UnderlyingReader")) const auto& underlying_reader = scope.FindVar(Input("UnderlyingReader"))
->Get<framework::ReaderHolder>(); ->Get<framework::ReaderHolder>();
int pass_num = Attr<int>("pass_num"); int pass_num = Attr<int>("pass_num");
out->Reset(new MultiPassReader(underlying_reader.Get(), pass_num)); out->Reset(framework::MakeDecoratedReader<MultiPassReader>(
underlying_reader, pass_num));
} }
}; };
......
...@@ -19,22 +19,27 @@ namespace paddle { ...@@ -19,22 +19,27 @@ namespace paddle {
namespace operators { namespace operators {
namespace reader { namespace reader {
class PyReader : public framework::ReaderBase { class PyReader : public framework::FileReader {
public: public:
explicit PyReader(const std::shared_ptr<LoDTensorBlockingQueue>& queue) { explicit PyReader(const std::shared_ptr<LoDTensorBlockingQueue>& queue)
: framework::FileReader() {
PADDLE_ENFORCE(queue != nullptr, "LoDTensorBlockingQueue must not be null"); PADDLE_ENFORCE(queue != nullptr, "LoDTensorBlockingQueue must not be null");
queue_ = queue; queue_ = queue;
} }
void ReadNext(std::vector<framework::LoDTensor>* out) override { void ReadNextImpl(std::vector<framework::LoDTensor>* out) override {
bool success; bool success;
*out = queue_->Pop(&success); *out = queue_->Pop(&success);
if (!success) out->clear(); if (!success) out->clear();
} }
void ReInit() override {}
private: private:
void ShutdownImpl() override { /* TODO */
}
void StartImpl() override { /* TODO */
}
std::shared_ptr<LoDTensorBlockingQueue> queue_; std::shared_ptr<LoDTensorBlockingQueue> queue_;
}; };
...@@ -51,14 +56,14 @@ class CreatePyReaderOp : public framework::OperatorBase { ...@@ -51,14 +56,14 @@ class CreatePyReaderOp : public framework::OperatorBase {
const std::string& queue_name = Input("blocking_queue"); const std::string& queue_name = Input("blocking_queue");
auto* queue_holder_var = scope.FindVar(queue_name); auto* queue_holder_var = scope.FindVar(queue_name);
PADDLE_ENFORCE( PADDLE_ENFORCE_NOT_NULL(
queue_holder_var != nullptr, queue_holder_var,
"No LoDTensorBlockingQueueHolder variable with name %s found", "No LoDTensorBlockingQueueHolder variable with name %s found",
queue_name); queue_name);
auto* queue_holder = auto* queue_holder =
queue_holder_var->template GetMutable<LoDTensorBlockingQueueHolder>(); queue_holder_var->template GetMutable<LoDTensorBlockingQueueHolder>();
out->Reset(new PyReader(queue_holder->GetQueue())); out->Reset(std::make_shared<PyReader>(queue_holder->GetQueue()));
} }
}; };
......
...@@ -19,11 +19,11 @@ namespace operators { ...@@ -19,11 +19,11 @@ namespace operators {
namespace reader { namespace reader {
template <typename T> template <typename T>
class RandomDataGenerator : public framework::ReaderBase { class RandomDataGenerator : public framework::FileReader {
public: public:
RandomDataGenerator(const std::vector<framework::DDim>& shapes, float low, RandomDataGenerator(const std::vector<framework::DDim>& shapes, float low,
float high) float high)
: framework::ReaderBase(), low_(low), high_(high), shapes_(shapes) { : framework::FileReader(), low_(low), high_(high), shapes_(shapes) {
PADDLE_ENFORCE_LE(low, high, PADDLE_ENFORCE_LE(low, high,
"'low' shouldn't be greater than 'high'.(%f vs %f)", low, "'low' shouldn't be greater than 'high'.(%f vs %f)", low,
high); high);
...@@ -32,7 +32,7 @@ class RandomDataGenerator : public framework::ReaderBase { ...@@ -32,7 +32,7 @@ class RandomDataGenerator : public framework::ReaderBase {
dist_ = std::uniform_real_distribution<float>(low_, high_); dist_ = std::uniform_real_distribution<float>(low_, high_);
} }
void ReadNext(std::vector<framework::LoDTensor>* out) override { void ReadNextImpl(std::vector<framework::LoDTensor>* out) override {
out->clear(); out->clear();
out->reserve(shapes_.size()); out->reserve(shapes_.size());
for (const framework::DDim& shape : shapes_) { for (const framework::DDim& shape : shapes_) {
...@@ -51,8 +51,6 @@ class RandomDataGenerator : public framework::ReaderBase { ...@@ -51,8 +51,6 @@ class RandomDataGenerator : public framework::ReaderBase {
} }
} }
void ReInit() override { return; }
private: private:
float low_; float low_;
float high_; float high_;
...@@ -79,8 +77,8 @@ class CreateRandomDataGeneratorOp : public framework::OperatorBase { ...@@ -79,8 +77,8 @@ class CreateRandomDataGeneratorOp : public framework::OperatorBase {
std::vector<framework::DDim> shapes = RestoreShapes(shape_concat, ranks); std::vector<framework::DDim> shapes = RestoreShapes(shape_concat, ranks);
auto* out = scope.FindVar(Output("Out")) auto* out = scope.FindVar(Output("Out"))
->template GetMutable<framework::ReaderHolder>(); ->template GetMutable<framework::ReaderHolder>();
out->Reset(new RandomDataGenerator<T>(shapes, Attr<float>("low"), out->Reset(std::make_shared<RandomDataGenerator<T>>(
Attr<float>("high"))); shapes, Attr<float>("low"), Attr<float>("high")));
} }
}; };
......
...@@ -21,10 +21,8 @@ namespace reader { ...@@ -21,10 +21,8 @@ namespace reader {
template <bool ThreadSafe> template <bool ThreadSafe>
class RecordIOFileReader : public framework::FileReader { class RecordIOFileReader : public framework::FileReader {
public: public:
explicit RecordIOFileReader(const std::string& filename, explicit RecordIOFileReader(const std::string& filename)
const std::vector<framework::DDim>& dims) : scanner_(filename),
: FileReader(dims),
scanner_(filename),
dev_ctx_(*platform::DeviceContextPool::Instance().Get( dev_ctx_(*platform::DeviceContextPool::Instance().Get(
platform::CPUPlace())) { platform::CPUPlace())) {
if (ThreadSafe) { if (ThreadSafe) {
...@@ -33,8 +31,6 @@ class RecordIOFileReader : public framework::FileReader { ...@@ -33,8 +31,6 @@ class RecordIOFileReader : public framework::FileReader {
LOG(INFO) << "Creating file reader" << filename; LOG(INFO) << "Creating file reader" << filename;
} }
void ReInit() override { scanner_.Reset(); }
protected: protected:
void ReadNextImpl(std::vector<framework::LoDTensor>* out) override { void ReadNextImpl(std::vector<framework::LoDTensor>* out) override {
if (ThreadSafe) { if (ThreadSafe) {
...@@ -45,6 +41,8 @@ class RecordIOFileReader : public framework::FileReader { ...@@ -45,6 +41,8 @@ class RecordIOFileReader : public framework::FileReader {
} }
} }
void StartImpl() override { scanner_.Reset(); }
private: private:
std::unique_ptr<std::mutex> mutex_; std::unique_ptr<std::mutex> mutex_;
recordio::Scanner scanner_; recordio::Scanner scanner_;
...@@ -58,20 +56,11 @@ class CreateRecordIOReaderOp : public framework::OperatorBase { ...@@ -58,20 +56,11 @@ class CreateRecordIOReaderOp : public framework::OperatorBase {
private: private:
void RunImpl(const framework::Scope& scope, void RunImpl(const framework::Scope& scope,
const platform::Place& dev_place) const override { const platform::Place& dev_place) const override {
const auto& shape_concat = Attr<std::vector<int>>("shape_concat");
const auto& ranks = Attr<std::vector<int>>("ranks");
PADDLE_ENFORCE(!shape_concat.empty() && !ranks.empty());
PADDLE_ENFORCE_EQ(std::accumulate(ranks.begin(), ranks.end(), 0),
static_cast<int>(shape_concat.size()),
"The accumulate of all ranks should be equal to the "
"shape concat's length.");
std::string filename = Attr<std::string>("filename"); std::string filename = Attr<std::string>("filename");
auto* out = scope.FindVar(Output("Out")) auto* out = scope.FindVar(Output("Out"))
->template GetMutable<framework::ReaderHolder>(); ->template GetMutable<framework::ReaderHolder>();
out->Reset(new RecordIOFileReader<true>( out->Reset(std::make_shared<RecordIOFileReader<true>>(filename));
filename, RestoreShapes(shape_concat, ranks)));
} }
}; };
......
...@@ -34,7 +34,7 @@ class ShuffleReader : public framework::DecoratedReader { ...@@ -34,7 +34,7 @@ class ShuffleReader : public framework::DecoratedReader {
ReloadBuffer(); ReloadBuffer();
} }
void ReadNext(std::vector<framework::LoDTensor>* out) override { void ReadNextImpl(std::vector<framework::LoDTensor>* out) override {
out->clear(); out->clear();
if (iteration_pos_ >= buffer_.size()) { if (iteration_pos_ >= buffer_.size()) {
VLOG(10) << "Resetting shuffle buffer"; VLOG(10) << "Resetting shuffle buffer";
...@@ -47,6 +47,17 @@ class ShuffleReader : public framework::DecoratedReader { ...@@ -47,6 +47,17 @@ class ShuffleReader : public framework::DecoratedReader {
} }
private: private:
void ShutdownImpl() override {
buffer_.clear();
iteration_pos_ = 0;
reader_->Shutdown();
}
void StartImpl() override {
reader_->Start();
ReloadBuffer();
}
void ReloadBuffer() { void ReloadBuffer() {
buffer_.clear(); buffer_.clear();
buffer_.reserve(buffer_size_); buffer_.reserve(buffer_size_);
...@@ -86,9 +97,8 @@ class CreateShuffleReaderOp : public framework::OperatorBase { ...@@ -86,9 +97,8 @@ class CreateShuffleReaderOp : public framework::OperatorBase {
} }
const auto& underlying_reader = scope.FindVar(Input("UnderlyingReader")) const auto& underlying_reader = scope.FindVar(Input("UnderlyingReader"))
->Get<framework::ReaderHolder>(); ->Get<framework::ReaderHolder>();
out->Reset( out->Reset(framework::MakeDecoratedReader<ShuffleReader>(
new ShuffleReader(underlying_reader.Get(), underlying_reader, static_cast<size_t>(Attr<int>("buffer_size"))));
static_cast<size_t>(Attr<int>("buffer_size"))));
} }
}; };
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/detail/safe_ref.h"
#include "paddle/fluid/operators/reader/reader_op_registry.h"
namespace paddle {
namespace operators {
namespace reader {
class ThreadedReader : public framework::DecoratedReader {
public:
explicit ThreadedReader(const std::shared_ptr<ReaderBase>& reader)
: DecoratedReader(reader) {}
void ReadNext(std::vector<framework::LoDTensor>* out) override {
std::lock_guard<std::mutex> lock(mutex_);
reader_->ReadNext(out);
}
void ReInit() override { reader_->ReInit(); }
private:
std::mutex mutex_;
};
class CreateThreadedReaderOp : public framework::OperatorBase {
public:
using framework::OperatorBase::OperatorBase;
private:
void RunImpl(const framework::Scope& scope,
const platform::Place& dev_place) const override {
auto* out = detail::Ref(scope.FindVar(Output("Out")))
.GetMutable<framework::ReaderHolder>();
if (out->Get() != nullptr) {
return;
}
const auto& underlying_reader = scope.FindVar(Input("UnderlyingReader"))
->Get<framework::ReaderHolder>();
out->Reset(new ThreadedReader(underlying_reader.Get()));
}
};
class CreateThreadedReaderOpMaker : public DecoratedReaderMakerBase {
protected:
void Apply() override {
AddComment(R"DOC(
CreateThreadedReader Operator
This operator creates a threaded reader. A threaded reader's
'ReadNext()' can be invoked by several threads at the same
time.
When the attribute 'safe_mode' is true, the threaded reader's
'ReInit()' is disabled to avoid unexpected bugs in multi-thread
environment.
)DOC");
}
};
} // namespace reader
} // namespace operators
} // namespace paddle
namespace reader = paddle::operators::reader;
REGISTER_DECORATED_READER_OPERATOR(create_threaded_reader,
reader::CreateThreadedReaderOp,
reader::CreateThreadedReaderOpMaker);
...@@ -23,24 +23,26 @@ namespace reader { ...@@ -23,24 +23,26 @@ namespace reader {
class MultiFileReader : public framework::ReaderBase { class MultiFileReader : public framework::ReaderBase {
public: public:
MultiFileReader(const std::vector<std::string>& file_names, MultiFileReader(const std::vector<std::string>& file_names, size_t thread_num,
const std::vector<framework::DDim>& dims, size_t thread_num,
size_t buffer_size) size_t buffer_size)
: buffer_size_(buffer_size) { : buffer_size_(buffer_size) {
readers_.reserve(file_names.size()); readers_.reserve(file_names.size());
for (const std::string& f_name : file_names) { for (const std::string& f_name : file_names) {
readers_.emplace_back(CreateReaderByFileName(f_name, dims)); readers_.emplace_back(CreateReaderByFileName(f_name));
} }
prefetchers_.resize(thread_num); prefetchers_.resize(thread_num);
StartNewScheduler(); StartNewScheduler();
} }
void ReadNext(std::vector<framework::LoDTensor>* out) override; void ReadNextImpl(std::vector<framework::LoDTensor>* out) override;
void ReInit() override;
~MultiFileReader() { EndScheduler(); } ~MultiFileReader() { EndScheduler(); }
private: private:
void ShutdownImpl() override { EndScheduler(); }
void StartImpl() override { StartNewScheduler(); }
void StartNewScheduler(); void StartNewScheduler();
void EndScheduler(); void EndScheduler();
void ScheduleThreadFunc(); void ScheduleThreadFunc();
...@@ -55,17 +57,12 @@ class MultiFileReader : public framework::ReaderBase { ...@@ -55,17 +57,12 @@ class MultiFileReader : public framework::ReaderBase {
reader::BlockingQueue<std::vector<framework::LoDTensor>>* buffer_; reader::BlockingQueue<std::vector<framework::LoDTensor>>* buffer_;
}; };
void MultiFileReader::ReadNext(std::vector<framework::LoDTensor>* out) { void MultiFileReader::ReadNextImpl(std::vector<framework::LoDTensor>* out) {
if (!buffer_->Receive(out)) { if (!buffer_->Receive(out)) {
out->clear(); out->clear();
} }
} }
void MultiFileReader::ReInit() {
EndScheduler();
StartNewScheduler();
}
void MultiFileReader::StartNewScheduler() { void MultiFileReader::StartNewScheduler() {
size_t thread_num = prefetchers_.size(); size_t thread_num = prefetchers_.size();
waiting_reader_idx_ = new reader::BlockingQueue<size_t>(readers_.size()); waiting_reader_idx_ = new reader::BlockingQueue<size_t>(readers_.size());
...@@ -120,7 +117,7 @@ void MultiFileReader::ScheduleThreadFunc() { ...@@ -120,7 +117,7 @@ void MultiFileReader::ScheduleThreadFunc() {
} }
} }
} }
// If users invoke ReInit() when scheduler is running, it will close the // If users invoke Shutdown() when scheduler is running, it will close the
// 'avaiable_thread_idx_' and prefecther threads have no way to tell scheduler // 'avaiable_thread_idx_' and prefecther threads have no way to tell scheduler
// to release their resource. So a check is needed before scheduler ends. // to release their resource. So a check is needed before scheduler ends.
for (auto& p : prefetchers_) { for (auto& p : prefetchers_) {
...@@ -138,7 +135,8 @@ void MultiFileReader::PrefetchThreadFunc(size_t reader_idx, size_t thread_idx) { ...@@ -138,7 +135,8 @@ void MultiFileReader::PrefetchThreadFunc(size_t reader_idx, size_t thread_idx) {
std::vector<framework::LoDTensor> ins; std::vector<framework::LoDTensor> ins;
reader->ReadNext(&ins); reader->ReadNext(&ins);
if (ins.empty()) { if (ins.empty()) {
reader->ReInit(); reader->Shutdown();
reader->Start();
break; break;
} }
try { try {
...@@ -180,9 +178,8 @@ class OpenFilesOp : public framework::OperatorBase { ...@@ -180,9 +178,8 @@ class OpenFilesOp : public framework::OperatorBase {
auto* out = scope.FindVar(Output("Out")) auto* out = scope.FindVar(Output("Out"))
->template GetMutable<framework::ReaderHolder>(); ->template GetMutable<framework::ReaderHolder>();
out->Reset(new MultiFileReader(file_names, out->Reset(
RestoreShapes(shape_concat, ranks), std::make_shared<MultiFileReader>(file_names, thread_num, buffer_size));
thread_num, buffer_size));
} }
}; };
......
...@@ -39,7 +39,7 @@ std::unordered_map<std::string, FileReaderCreator>& FileReaderRegistry() { ...@@ -39,7 +39,7 @@ std::unordered_map<std::string, FileReaderCreator>& FileReaderRegistry() {
} }
std::unique_ptr<framework::ReaderBase> CreateReaderByFileName( std::unique_ptr<framework::ReaderBase> CreateReaderByFileName(
const std::string& file_name, const std::vector<framework::DDim>& dims) { const std::string& file_name) {
size_t separator_pos = file_name.find_last_of(kFileFormatSeparator); size_t separator_pos = file_name.find_last_of(kFileFormatSeparator);
PADDLE_ENFORCE_NE(separator_pos, std::string::npos, PADDLE_ENFORCE_NE(separator_pos, std::string::npos,
"File name illegal! A legal file name should be like: " "File name illegal! A legal file name should be like: "
...@@ -49,7 +49,7 @@ std::unique_ptr<framework::ReaderBase> CreateReaderByFileName( ...@@ -49,7 +49,7 @@ std::unique_ptr<framework::ReaderBase> CreateReaderByFileName(
auto itor = FileReaderRegistry().find(filetype); auto itor = FileReaderRegistry().find(filetype);
PADDLE_ENFORCE(itor != FileReaderRegistry().end(), PADDLE_ENFORCE(itor != FileReaderRegistry().end(),
"No file reader registered for '%s' format.", filetype); "No file reader registered for '%s' format.", filetype);
framework::ReaderBase* reader = (itor->second)(file_name, dims); framework::ReaderBase* reader = (itor->second)(file_name);
return std::unique_ptr<framework::ReaderBase>(reader); return std::unique_ptr<framework::ReaderBase>(reader);
} }
......
...@@ -25,22 +25,21 @@ namespace reader { ...@@ -25,22 +25,21 @@ namespace reader {
static constexpr char kFileFormatSeparator[] = "."; static constexpr char kFileFormatSeparator[] = ".";
using FileReaderCreator = std::function<framework::ReaderBase*( using FileReaderCreator =
const std::string&, const std::vector<framework::DDim>&)>; std::function<framework::ReaderBase*(const std::string&)>;
std::unordered_map<std::string, FileReaderCreator>& FileReaderRegistry(); std::unordered_map<std::string, FileReaderCreator>& FileReaderRegistry();
template <typename Reader> template <typename Reader>
int RegisterFileReader(const std::string& filetype) { int RegisterFileReader(const std::string& filetype) {
FileReaderRegistry()[filetype] = []( FileReaderRegistry()[filetype] = [](const std::string& fn) {
const std::string& fn, const std::vector<framework::DDim>& dims) { return new Reader(fn);
return new Reader(fn, dims);
}; };
return 0; return 0;
} }
std::unique_ptr<framework::ReaderBase> CreateReaderByFileName( std::unique_ptr<framework::ReaderBase> CreateReaderByFileName(
const std::string& file_name, const std::vector<framework::DDim>& dims); const std::string& file_name);
extern std::vector<framework::DDim> RestoreShapes( extern std::vector<framework::DDim> RestoreShapes(
const std::vector<int>& shape_concat, const std::vector<int>& ranks); const std::vector<int>& shape_concat, const std::vector<int>& ranks);
......
...@@ -296,7 +296,7 @@ All parameter, weight, gradient are variables in Paddle. ...@@ -296,7 +296,7 @@ All parameter, weight, gradient are variables in Paddle.
py::return_value_policy::reference); py::return_value_policy::reference);
py::class_<framework::ReaderHolder>(m, "Reader", "") py::class_<framework::ReaderHolder>(m, "Reader", "")
.def("reset", &framework::ReaderHolder::ReInit); .def("reset", &framework::ReaderHolder::ResetAll);
using LoDTensorBlockingQueue = using LoDTensorBlockingQueue =
::paddle::operators::reader::LoDTensorBlockingQueue; ::paddle::operators::reader::LoDTensorBlockingQueue;
......
...@@ -375,9 +375,6 @@ def open_recordio_file(filename, ...@@ -375,9 +375,6 @@ def open_recordio_file(filename,
if pass_num > 1: if pass_num > 1:
main_prog_var = multi_pass(reader=main_prog_var, pass_num=pass_num) main_prog_var = multi_pass(reader=main_prog_var, pass_num=pass_num)
if for_parallel:
main_prog_var = parallel(reader=main_prog_var)
return monkey_patch_reader_methods(main_prog_var) return monkey_patch_reader_methods(main_prog_var)
...@@ -529,9 +526,6 @@ def open_files(filenames, ...@@ -529,9 +526,6 @@ def open_files(filenames,
main_prog_reader = multi_pass( main_prog_reader = multi_pass(
reader=main_prog_reader, pass_num=pass_num) reader=main_prog_reader, pass_num=pass_num)
if for_parallel:
main_prog_reader = parallel(reader=main_prog_reader)
return monkey_patch_reader_methods(main_prog_reader) return monkey_patch_reader_methods(main_prog_reader)
...@@ -647,11 +641,6 @@ def multi_pass(reader, pass_num): ...@@ -647,11 +641,6 @@ def multi_pass(reader, pass_num):
'create_multi_pass_reader', reader, {'pass_num': int(pass_num)}) 'create_multi_pass_reader', reader, {'pass_num': int(pass_num)})
def parallel(reader):
return __create_shared_decorated_reader__('create_threaded_reader', reader,
{})
def read_file(reader): def read_file(reader):
""" """
Execute the given reader and get data via it. Execute the given reader and get data via it.
......
...@@ -14,10 +14,11 @@ ...@@ -14,10 +14,11 @@
import paddle import paddle
import paddle.fluid.layers as layers import paddle.fluid.layers as layers
from paddle.fluid.framework import Program, program_guard, default_main_program, default_startup_program from paddle.fluid.framework import Program, program_guard
from paddle.fluid.executor import Executor from paddle.fluid.executor import Executor
from paddle.fluid.optimizer import MomentumOptimizer from paddle.fluid.optimizer import MomentumOptimizer
import paddle.fluid.core as core import paddle.fluid.core as core
import paddle.fluid as fluid
import unittest import unittest
import numpy as np import numpy as np
...@@ -31,14 +32,13 @@ class TestMNISTIfElseOp(unittest.TestCase): ...@@ -31,14 +32,13 @@ class TestMNISTIfElseOp(unittest.TestCase):
label = layers.data(name='y', shape=[1], dtype='int64') label = layers.data(name='y', shape=[1], dtype='int64')
limit = layers.fill_constant_batch_size_like( limit = layers.fill_constant(shape=[1], dtype='int64', value=5)
input=label, dtype='int64', shape=[1], value=5.0)
cond = layers.less_than(x=label, y=limit) cond = layers.less_than(x=label, y=limit)
true_image, false_image = layers.split_lod_tensor( true_image, false_image = layers.split_lod_tensor(
input=image, mask=cond) input=image, mask=cond)
true_out = layers.create_tensor(dtype='float32') true_out = layers.create_tensor(dtype='float32')
true_cond = layers.ConditionalBlock([true_image]) true_cond = layers.ConditionalBlock([cond])
with true_cond.block(): with true_cond.block():
hidden = layers.fc(input=true_image, size=100, act='tanh') hidden = layers.fc(input=true_image, size=100, act='tanh')
...@@ -46,7 +46,7 @@ class TestMNISTIfElseOp(unittest.TestCase): ...@@ -46,7 +46,7 @@ class TestMNISTIfElseOp(unittest.TestCase):
layers.assign(input=prob, output=true_out) layers.assign(input=prob, output=true_out)
false_out = layers.create_tensor(dtype='float32') false_out = layers.create_tensor(dtype='float32')
false_cond = layers.ConditionalBlock([false_image]) false_cond = layers.ConditionalBlock([cond])
with false_cond.block(): with false_cond.block():
hidden = layers.fc(input=false_image, size=200, act='tanh') hidden = layers.fc(input=false_image, size=200, act='tanh')
...@@ -64,7 +64,7 @@ class TestMNISTIfElseOp(unittest.TestCase): ...@@ -64,7 +64,7 @@ class TestMNISTIfElseOp(unittest.TestCase):
train_reader = paddle.batch( train_reader = paddle.batch(
paddle.reader.shuffle( paddle.reader.shuffle(
paddle.dataset.mnist.train(), buf_size=8192), paddle.dataset.mnist.train(), buf_size=8192),
batch_size=200) batch_size=10)
place = core.CPUPlace() place = core.CPUPlace()
exe = Executor(place) exe = Executor(place)
...@@ -94,8 +94,7 @@ class TestMNISTIfElseOp(unittest.TestCase): ...@@ -94,8 +94,7 @@ class TestMNISTIfElseOp(unittest.TestCase):
label = layers.data(name='y', shape=[1], dtype='int64') label = layers.data(name='y', shape=[1], dtype='int64')
limit = layers.fill_constant_batch_size_like( limit = layers.fill_constant(shape=[1], dtype='int64', value=5)
input=label, dtype='int64', shape=[1], value=5.0)
cond = layers.less_than(x=label, y=limit) cond = layers.less_than(x=label, y=limit)
ie = layers.IfElse(cond) ie = layers.IfElse(cond)
...@@ -125,7 +124,7 @@ class TestMNISTIfElseOp(unittest.TestCase): ...@@ -125,7 +124,7 @@ class TestMNISTIfElseOp(unittest.TestCase):
place = core.CPUPlace() place = core.CPUPlace()
exe = Executor(place) exe = Executor(place)
exe.run(kwargs['startup_program']) exe.run(startup_prog)
PASS_NUM = 100 PASS_NUM = 100
for pass_id in range(PASS_NUM): for pass_id in range(PASS_NUM):
for data in train_reader(): for data in train_reader():
...@@ -133,7 +132,7 @@ class TestMNISTIfElseOp(unittest.TestCase): ...@@ -133,7 +132,7 @@ class TestMNISTIfElseOp(unittest.TestCase):
y_data = np.array(map(lambda x: x[1], data)).astype("int64") y_data = np.array(map(lambda x: x[1], data)).astype("int64")
y_data = y_data.reshape((y_data.shape[0], 1)) y_data = y_data.reshape((y_data.shape[0], 1))
outs = exe.run(kwargs['main_program'], outs = exe.run(prog,
feed={'x': x_data, feed={'x': x_data,
'y': y_data}, 'y': y_data},
fetch_list=[avg_loss]) fetch_list=[avg_loss])
...@@ -143,6 +142,67 @@ class TestMNISTIfElseOp(unittest.TestCase): ...@@ -143,6 +142,67 @@ class TestMNISTIfElseOp(unittest.TestCase):
self.assertFalse(True) self.assertFalse(True)
class TestIfElse(unittest.TestCase):
def set_test_case(self):
# condiction is: self.data < self.cond_value
self.cond_value = 0.5
self.data = np.random.rand(25, 1).astype(np.float32)
def compare_ifelse_op_and_numpy(self, place):
self.set_test_case()
prog = Program()
startup_prog = Program()
with program_guard(prog, startup_prog):
src = layers.data(name='data', shape=[1], dtype='float32')
cond = layers.fill_constant(
[1], dtype='float32', value=self.cond_value)
ifcond = layers.less_than(x=src, y=cond)
ie = layers.IfElse(ifcond)
with ie.true_block():
true_target = ie.input(src)
ie.output(true_target)
with ie.false_block():
false_target = ie.input(src)
ie.output(false_target)
if_out = ie()
out = layers.reduce_sum(if_out)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
fetch_list = [out]
o1, = exe.run(fluid.default_main_program(),
feed={'data': self.data},
fetch_list=[out])
o2 = np.sum(self.data)
self.assertTrue(
np.allclose(
o1, o2, atol=1e-8),
"IfElse result : " + str(o1) + "\n Numpy result :" + str(o2))
def test_cpu(self):
self.compare_ifelse_op_and_numpy(fluid.CPUPlace())
def test_cuda(self):
if not core.is_compiled_with_cuda():
return
self.compare_ifelse_op_and_numpy(fluid.CUDAPlace(0))
class TestIfElseTrueBranch(TestIfElse):
def set_test_case(self):
# condiction is: self.data < self.cond_value
self.cond_value = 10.
self.data = np.random.rand(25, 1).astype(np.float32)
class TestIfElseFalseBranch(TestIfElse):
def set_test_case(self):
# condiction is: self.data < self.cond_value
self.cond_value = -10.
self.data = np.random.rand(25, 1).astype(np.float32)
if __name__ == '__main__': if __name__ == '__main__':
# temp disable if else unittest since it could be buggy. unittest.main()
exit(0)
...@@ -40,7 +40,6 @@ class TestFakeDequantizeMaxAbsOp(OpTest): ...@@ -40,7 +40,6 @@ class TestFakeDequantizeMaxAbsOp(OpTest):
self.op_type = "fake_dequantize_max_abs" self.op_type = "fake_dequantize_max_abs"
x = np.random.randn(31, 65).astype("float32") x = np.random.randn(31, 65).astype("float32")
yq, scale = quantize_max_abs(x, self.num_bits) yq, scale = quantize_max_abs(x, self.num_bits)
print 'scale ', scale
ydq = dequantize_max_abs(yq, self.num_bits, scale) ydq = dequantize_max_abs(yq, self.num_bits, scale)
self.inputs = {'X': yq} self.inputs = {'X': yq}
......
...@@ -113,7 +113,9 @@ class BaseParallelForTest(unittest.TestCase): ...@@ -113,7 +113,9 @@ class BaseParallelForTest(unittest.TestCase):
generator = callback() generator = callback()
# Automatically insert parallel do if use_parallel = True # Automatically insert parallel do if use_parallel = True
if use_parallel: if use_parallel:
places = fluid.layers.get_places() thread_num = fluid.core.get_cuda_device_count(
) if use_gpu else 8
places = fluid.layers.get_places(thread_num)
pd = fluid.layers.ParallelDo(places, use_nccl=use_nccl) pd = fluid.layers.ParallelDo(places, use_nccl=use_nccl)
data = next(generator) data = next(generator)
......
from setuptools import setup, Distribution, Extension from setuptools import setup, Distribution, Extension
import subprocess import subprocess
import shutil
import os import os
import re
import shutil
class BinaryDistribution(Distribution): class BinaryDistribution(Distribution):
def has_ext_modules(foo): def has_ext_modules(foo):
return True return True
MAJOR = 0
MINOR = 14
PATCH = 0
RC = 0 RC = 0
ISTAGED = False
...@@ -22,14 +19,47 @@ def git_commit(): ...@@ -22,14 +19,47 @@ def git_commit():
git_commit = 'Unknown' git_commit = 'Unknown'
return git_commit return git_commit
def _get_version_detail(idx):
assert idx < 3, "vesion info consists of %(major)d.%(minor)d.%(patch)d, \
so detail index must less than 3"
if re.match('@TAG_VERSION_REGEX@', '@PADDLE_VERSION@'):
version_details = '@PADDLE_VERSION@'.split('.')
if len(version_details) == 3:
return version_details[idx]
return 0
def get_major():
return int(_get_version_detail(0))
def get_minor():
return int(_get_version_detail(1))
def get_patch():
return str(_get_version_detail(2))
def is_taged():
try:
cmd = ['git', 'describe', '--exact-match', '--tags']
git_tag = subprocess.Popen(cmd, stdout = subprocess.PIPE).communicate()[0].strip()
except:
return False
if git_tag.replace('v', '') == '@PADDLE_VERSION@':
return True
else:
return False
def write_version_py(filename='paddle/version.py'): def write_version_py(filename='paddle/version.py'):
cnt = ''' cnt = '''
# THIS FILE IS GENERATED FROM PADDLEPADDLE SETUP.PY # THIS FILE IS GENERATED FROM PADDLEPADDLE SETUP.PY
# #
full_version = '%(major)d.%(minor)d.%(patch)d' full_version = '%(major)d.%(minor)d.%(patch)s'
major = '%(major)d' major = '%(major)d'
minor = '%(minor)d' minor = '%(minor)d'
patch = '%(patch)d' patch = '%(patch)s'
rc = '%(rc)d' rc = '%(rc)d'
istaged = %(istaged)s istaged = %(istaged)s
commit = '%(commit)s' commit = '%(commit)s'
...@@ -51,13 +81,13 @@ def mkl(): ...@@ -51,13 +81,13 @@ def mkl():
commit = git_commit() commit = git_commit()
with open(filename, 'w') as f: with open(filename, 'w') as f:
f.write(cnt % { f.write(cnt % {
'major': MAJOR, 'major': get_major(),
'minor': MINOR, 'minor': get_minor(),
'patch': PATCH, 'patch': get_patch(),
'rc': RC, 'rc': RC,
'version': '${PADDLE_VERSION}', 'version': '${PADDLE_VERSION}',
'commit': commit, 'commit': commit,
'istaged': ISTAGED, 'istaged': is_taged(),
'with_mkl': '@WITH_MKL@'}) 'with_mkl': '@WITH_MKL@'})
write_version_py(filename='@PADDLE_BINARY_DIR@/python/paddle/version.py') write_version_py(filename='@PADDLE_BINARY_DIR@/python/paddle/version.py')
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册