Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
fcd93b32
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2305
Star
20932
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
fcd93b32
编写于
6月 12, 2021
作者:
L
limingshu
提交者:
GitHub
6月 12, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Support Div and FloorDiv functor in elementwise system (#33053)
上级
cd95ea82
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
114 addition
and
46 deletion
+114
-46
paddle/fluid/operators/elementwise/elementwise_div_op.cu
paddle/fluid/operators/elementwise/elementwise_div_op.cu
+28
-30
paddle/fluid/operators/elementwise/elementwise_floordiv_op.cu
...le/fluid/operators/elementwise/elementwise_floordiv_op.cu
+33
-1
paddle/fluid/operators/elementwise/elementwise_floordiv_op.h
paddle/fluid/operators/elementwise/elementwise_floordiv_op.h
+0
-1
paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h
paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h
+53
-14
未找到文件。
paddle/fluid/operators/elementwise/elementwise_div_op.cu
浏览文件 @
fcd93b32
...
...
@@ -12,8 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/elementwise/elementwise_div_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.cu.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_broadcast.cu.h"
#include "paddle/fluid/platform/complex.h"
#include "paddle/fluid/platform/float16.h"
...
...
@@ -23,38 +22,37 @@ namespace plat = paddle::platform;
namespace
paddle
{
namespace
operators
{
template
<
typename
T
,
typename
Enable
=
void
>
struct
CudaDivFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
*
args
)
const
{
return
args
[
0
]
/
args
[
1
];
}
};
template
<
typename
T
>
struct
SameDimsElemwiseDiv
<
platform
::
CUDADeviceContext
,
T
>
{
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
,
const
framework
::
Tensor
*
x
,
const
framework
::
Tensor
*
y
,
framework
::
Tensor
*
z
)
{
DivRangeFunctor
<
T
>
functor
(
x
->
data
<
T
>
(),
y
->
data
<
T
>
(),
z
->
data
<
T
>
());
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
platform
::
ForRange
<
platform
::
CUDADeviceContext
>
for_range
(
dev_ctx
,
x
->
numel
());
for_range
(
functor
);
struct
CudaDivFunctor
<
T
,
typename
std
::
enable_if_t
<
std
::
is_integral
<
T
>::
value
>>
{
inline
HOSTDEVICE
T
operator
()(
const
T
*
args
)
const
{
PADDLE_ENFORCE
(
args
[
1
]
!=
0
,
"Invalid Argument Error: Integer division by zero "
"encountered in divide. Please check the input value."
);
return
args
[
0
]
/
args
[
1
];
}
};
template
<
>
struct
SameDimsElemwiseDiv
<
platform
::
CUDADeviceContext
,
platform
::
float16
>
{
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
,
const
framework
::
Tensor
*
x
,
const
framework
::
Tensor
*
y
,
framework
::
Tensor
*
z
)
{
auto
size
=
x
->
numel
();
dim3
grid_size
=
dim3
(((
size
+
7
)
/
8
+
PADDLE_CUDA_THREAD_SIZE
-
1
)
/
PADDLE_CUDA_THREAD_SIZE
,
1
);
dim3
block_size
=
dim3
(
PADDLE_CUDA_THREAD_SIZE
,
1
);
const
half
*
x2
=
reinterpret_cast
<
const
half
*>
(
x
->
data
<
platform
::
float16
>
());
const
half
*
y2
=
reinterpret_cast
<
const
half
*>
(
y
->
data
<
platform
::
float16
>
());
half
*
z2
=
reinterpret_cast
<
half
*>
(
z
->
data
<
platform
::
float16
>
());
SameDimsElemwiseDivCUDAKernel
<<<
grid_size
,
block_size
,
0
,
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>().
stream
()
>>>
(
x2
,
y2
,
z2
,
size
);
template
<
typename
T
>
class
ElementwiseDivKernel
<
platform
::
CUDADeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
std
::
vector
<
const
framework
::
Tensor
*>
ins
;
std
::
vector
<
framework
::
Tensor
*>
outs
;
const
auto
&
cuda_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
int
axis
=
PackTensorsIntoVector
<
T
>
(
ctx
,
&
ins
,
&
outs
);
LaunchElementwiseCudaKernel
<
ElementwiseType
::
kBinary
,
T
,
T
>
(
cuda_ctx
,
ins
,
&
outs
,
axis
,
CudaDivFunctor
<
T
>
());
}
};
...
...
paddle/fluid/operators/elementwise/elementwise_floordiv_op.cu
浏览文件 @
fcd93b32
...
...
@@ -12,11 +12,43 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/elementwise/elementwise_floordiv_op.h"
#include "paddle/fluid/
platform/float16
.h"
#include "paddle/fluid/
operators/elementwise/elementwise_op_broadcast.cu
.h"
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
struct
CudaFloorDivFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
argv
[])
const
{
PADDLE_ENFORCE
(
argv
[
1
]
!=
0
,
"InvalidArgument: divide by zero "
"encountered in floor-divide ops, please check.
\n
"
);
return
static_cast
<
T
>
(
std
::
trunc
(
argv
[
0
]
/
argv
[
1
]));
}
};
template
<
typename
T
>
class
ElementwiseFloorDivKernel
<
platform
::
CUDADeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
std
::
vector
<
const
framework
::
Tensor
*>
ins
;
std
::
vector
<
framework
::
Tensor
*>
outs
;
const
auto
&
cuda_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
int
axis
=
PackTensorsIntoVector
<
T
>
(
ctx
,
&
ins
,
&
outs
);
LaunchElementwiseCudaKernel
<
ElementwiseType
::
kBinary
,
T
,
T
>
(
cuda_ctx
,
ins
,
&
outs
,
axis
,
CudaFloorDivFunctor
<
T
>
());
}
};
}
// namespace operators
}
// namespace paddle
REGISTER_OP_CUDA_KERNEL
(
elementwise_floordiv
,
ops
::
ElementwiseFloorDivKernel
<
plat
::
CUDADeviceContext
,
int
>
,
...
...
paddle/fluid/operators/elementwise/elementwise_floordiv_op.h
浏览文件 @
fcd93b32
...
...
@@ -16,7 +16,6 @@ limitations under the License. */
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
#include "paddle/fluid/operators/math/blas.h"
namespace
paddle
{
...
...
paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h
浏览文件 @
fcd93b32
...
...
@@ -14,7 +14,7 @@ limitations under the License. */
#pragma once
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/
device_context
.h"
#include "paddle/fluid/platform/
cuda_device_function
.h"
#include "paddle/fluid/platform/fast_divmod.h"
#ifdef __HIPCC__
...
...
@@ -28,19 +28,62 @@ namespace operators {
enum
ElementwiseType
{
kUnary
=
1
,
kBinary
=
2
};
/*
* According to NVIDIA, if number of threads per block is 64/128/256/512,
* cuda performs better. And number of blocks should be greater (at least
* 2x~4x) than number of SMs. Hence, SM count is took into account within
* this function to determine the right number of threads per block.
*/
inline
int
GetThreadsConfig
(
const
platform
::
CUDADeviceContext
&
ctx
,
int64_t
numel
,
int
vec_size
)
{
int
threads
=
ELEMENTWISE_BLOCK_SIZE
;
int
sm_count
=
ctx
.
GetSMCount
();
int
active_threads_num
=
numel
/
vec_size
;
if
(
active_threads_num
/
(
sm_count
<<
1
)
<
ELEMENTWISE_BLOCK_SIZE
)
{
// Round up threads number into an exponential multiple of 2, while number
// of acitve blocks is about twice of SM, to acquire better performance.
threads
=
platform
::
RoundToPowerOfTwo
(
active_threads_num
/
(
sm_count
<<
1
));
}
else
if
(
active_threads_num
/
(
sm_count
<<
2
)
<
ELEMENTWISE_BLOCK_SIZE
)
{
// Round up threads number into an exponential multiple of 2, while number
// of acitve blocks is about 4 times of SM, to acquire better performance.
threads
=
platform
::
RoundToPowerOfTwo
(
active_threads_num
/
(
sm_count
<<
2
));
}
// Number of threads per block shall be larger than 64.
return
std
::
max
(
64
,
threads
);
}
/*
* Only the address of input data is the multiplier of 1,2,4, vectorized load
* with corresponding multiplier-value is possible. Moreover, the maximum length
* of vectorized load is 128 bits once. Hence, valid length of vectorized load
* shall be determined under both former constraints.
*/
template
<
typename
T
>
int
GetVectorizedSizeImpl
(
const
T
*
pointer
)
{
constexpr
int
max_load_bits
=
128
;
int
valid_vec_size
=
max_load_bits
/
CHAR_BIT
/
sizeof
(
T
);
uint64_t
address
=
reinterpret_cast
<
uint64_t
>
(
pointer
);
constexpr
int
vec8
=
std
::
alignment_of
<
CudaAlignedVector
<
T
,
8
>>::
value
;
// NOLINT
constexpr
int
vec4
=
std
::
alignment_of
<
CudaAlignedVector
<
T
,
4
>>::
value
;
// NOLINT
constexpr
int
vec2
=
std
::
alignment_of
<
CudaAlignedVector
<
T
,
2
>>::
value
;
// NOLINT
if
(
address
%
vec4
==
0
)
{
return
4
;
if
(
address
%
vec8
==
0
)
{
/*
* Currently, decide to deal with no more than 4 data once while adopting
* vectorization load/store, if performance test shows that dealing with
* 8 data once in vectorization load/store does get optimized, return code
* below can be changed into " return std::min(8, valid_vec_size); " .
*/
return
std
::
min
(
4
,
valid_vec_size
);
}
else
if
(
address
%
vec4
==
0
)
{
return
std
::
min
(
4
,
valid_vec_size
);
}
else
if
(
address
%
vec2
==
0
)
{
return
2
;
return
std
::
min
(
2
,
valid_vec_size
);
}
else
{
return
1
;
}
return
1
;
}
template
<
typename
InT
,
typename
OutT
>
...
...
@@ -96,7 +139,7 @@ struct ElementwiseDataWrapper {
template
<
ElementwiseType
ET
,
int
VecSize
,
typename
InT
,
typename
OutT
,
typename
Functor
>
__device__
void
VectorizedKernelImpl
(
__device__
inline
void
VectorizedKernelImpl
(
ElementwiseDataWrapper
<
ET
,
VecSize
,
InT
,
OutT
>
data
,
Functor
func
,
int
tid
)
{
using
InVecType
=
CudaAlignedVector
<
InT
,
VecSize
>
;
...
...
@@ -104,34 +147,30 @@ __device__ void VectorizedKernelImpl(
InVecType
ins_vec
[
ET
];
OutVecType
out_vec
;
InT
*
ins_ptr
[
ET
];
OutT
*
out_ptr
;
InT
ins
[
ET
]
;
#pragma unroll
for
(
int
i
=
0
;
i
<
ET
;
++
i
)
{
ins_ptr
[
i
]
=
reinterpret_cast
<
InT
*>
(
&
(
ins_vec
[
i
]));
}
out_ptr
=
reinterpret_cast
<
OutT
*>
(
&
out_vec
);
// load
data
.
load_vector
(
ins_vec
,
tid
);
// compute
#pragma unroll
for
(
int
i
=
0
;
i
<
VecSize
;
++
i
)
{
InT
ins
[
ET
];
#pragma unroll
for
(
int
j
=
0
;
j
<
ET
;
++
j
)
{
ins
[
j
]
=
ins_ptr
[
j
][
i
];
}
out_
ptr
[
i
]
=
func
(
ins
);
out_
vec
.
val
[
i
]
=
func
(
ins
);
}
// store
data
.
store_vector
(
out_vec
,
tid
);
}
template
<
ElementwiseType
ET
,
int
VecSize
,
typename
InT
,
typename
OutT
,
typename
Functor
>
__device__
void
ScalarKernelImpl
(
__device__
inline
void
ScalarKernelImpl
(
ElementwiseDataWrapper
<
ET
,
VecSize
,
InT
,
OutT
>
data
,
Functor
func
,
int
start
,
int
remain
)
{
InT
ins
[
ET
];
...
...
@@ -182,7 +221,7 @@ void LaunchSameDimsElementwiseCudaKernel(
// calculate the max vec_size for all ins and outs
auto
size
=
ins
[
0
]
->
numel
();
int
vec_size
=
GetVectorizedSize
<
InT
,
OutT
>
(
ins
,
*
outs
);
int
block_size
=
ELEMENTWISE_BLOCK_SIZE
;
int
block_size
=
GetThreadsConfig
(
ctx
,
size
,
vec_size
)
;
int
grid_size
=
((
size
+
vec_size
-
1
)
/
vec_size
+
block_size
-
1
)
/
block_size
;
const
InT
*
in0
=
ins
[
0
]
->
data
<
InT
>
();
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录