提交 fb49bc2c 编写于 作者: C caoying03

rename mse_cost into square_error_cost.

上级 c1feb27f
...@@ -53,7 +53,7 @@ __all__ = [ ...@@ -53,7 +53,7 @@ __all__ = [
'cos_sim', 'cos_sim',
'hsigmoid', 'hsigmoid',
'conv_projection', 'conv_projection',
'mse_cost', 'square_error_cost',
'regression_cost', 'regression_cost',
'classification_cost', 'classification_cost',
'LayerOutput', 'LayerOutput',
...@@ -4238,13 +4238,18 @@ def __cost_input__(input, label, weight=None): ...@@ -4238,13 +4238,18 @@ def __cost_input__(input, label, weight=None):
@wrap_name_default() @wrap_name_default()
@layer_support() @layer_support()
def mse_cost(input, label, weight=None, name=None, coeff=1.0, layer_attr=None): def square_error_cost(input,
label,
weight=None,
name=None,
coeff=1.0,
layer_attr=None):
""" """
mean squared error cost: sum of square error cost:
.. math:: .. math::
\\frac{1}{N}\sum_{i=1}^N(t_i-y_i)^2 cost = \\sum_{i=1}^N(t_i-y_i)^2
:param name: layer name. :param name: layer name.
:type name: basestring :type name: basestring
...@@ -4273,7 +4278,7 @@ def mse_cost(input, label, weight=None, name=None, coeff=1.0, layer_attr=None): ...@@ -4273,7 +4278,7 @@ def mse_cost(input, label, weight=None, name=None, coeff=1.0, layer_attr=None):
return LayerOutput(name, LayerType.COST, parents=parents, size=1) return LayerOutput(name, LayerType.COST, parents=parents, size=1)
regression_cost = mse_cost regression_cost = square_error_cost
@wrap_name_default("cost") @wrap_name_default("cost")
...@@ -5798,9 +5803,9 @@ def huber_regression_cost(input, ...@@ -5798,9 +5803,9 @@ def huber_regression_cost(input,
coeff=1.0, coeff=1.0,
layer_attr=None): layer_attr=None):
""" """
In statistics, the Huber loss is a loss function used in robust regression, In statistics, the Huber loss is a loss function used in robust regression,
that is less sensitive to outliers in data than the squared error loss. that is less sensitive to outliers in data than the squared error loss.
Given a prediction f(x), a label y and :math:`\delta`, the loss function Given a prediction f(x), a label y and :math:`\delta`, the loss function
is defined as: is defined as:
.. math: .. math:
...@@ -5848,13 +5853,13 @@ def huber_classification_cost(input, ...@@ -5848,13 +5853,13 @@ def huber_classification_cost(input,
coeff=1.0, coeff=1.0,
layer_attr=None): layer_attr=None):
""" """
For classification purposes, a variant of the Huber loss called modified Huber For classification purposes, a variant of the Huber loss called modified Huber
is sometimes used. Given a prediction f(x) (a real-valued classifier score) and is sometimes used. Given a prediction f(x) (a real-valued classifier score) and
a true binary class label :math:`y\in \left \{-1, 1 \right \}`, the modified Huber a true binary class label :math:`y\in \left \{-1, 1 \right \}`, the modified Huber
loss is defined as: loss is defined as:
.. math: .. math:
loss = \max \left ( 0, 1-yf(x) \right )^2, yf(x)\geq 1 loss = \max \left ( 0, 1-yf(x) \right )^2, yf(x)\geq 1
loss = -4yf(x), \text{otherwise} loss = -4yf(x), \text{otherwise}
The example usage is: The example usage is:
......
...@@ -45,7 +45,7 @@ layers { ...@@ -45,7 +45,7 @@ layers {
coeff: 1.0 coeff: 1.0
} }
layers { layers {
name: "__mse_cost_0__" name: "__square_error_cost_0__"
type: "square_error" type: "square_error"
size: 1 size: 1
active_type: "" active_type: ""
...@@ -130,7 +130,7 @@ input_layer_names: "label" ...@@ -130,7 +130,7 @@ input_layer_names: "label"
input_layer_names: "weight" input_layer_names: "weight"
input_layer_names: "multi_class_label" input_layer_names: "multi_class_label"
output_layer_names: "__cost_0__" output_layer_names: "__cost_0__"
output_layer_names: "__mse_cost_0__" output_layer_names: "__square_error_cost_0__"
output_layer_names: "__nce_layer_0__" output_layer_names: "__nce_layer_0__"
evaluators { evaluators {
name: "classification_error_evaluator" name: "classification_error_evaluator"
...@@ -146,7 +146,7 @@ sub_models { ...@@ -146,7 +146,7 @@ sub_models {
layer_names: "weight" layer_names: "weight"
layer_names: "__fc_layer_0__" layer_names: "__fc_layer_0__"
layer_names: "__cost_0__" layer_names: "__cost_0__"
layer_names: "__mse_cost_0__" layer_names: "__square_error_cost_0__"
layer_names: "multi_class_label" layer_names: "multi_class_label"
layer_names: "__nce_layer_0__" layer_names: "__nce_layer_0__"
input_layer_names: "input" input_layer_names: "input"
...@@ -154,7 +154,7 @@ sub_models { ...@@ -154,7 +154,7 @@ sub_models {
input_layer_names: "weight" input_layer_names: "weight"
input_layer_names: "multi_class_label" input_layer_names: "multi_class_label"
output_layer_names: "__cost_0__" output_layer_names: "__cost_0__"
output_layer_names: "__mse_cost_0__" output_layer_names: "__square_error_cost_0__"
output_layer_names: "__nce_layer_0__" output_layer_names: "__nce_layer_0__"
evaluator_names: "classification_error_evaluator" evaluator_names: "classification_error_evaluator"
is_recurrent_layer_group: false is_recurrent_layer_group: false
......
...@@ -10,7 +10,7 @@ fc = fc_layer(input=data, size=10, act=SoftmaxActivation()) ...@@ -10,7 +10,7 @@ fc = fc_layer(input=data, size=10, act=SoftmaxActivation())
outputs( outputs(
classification_cost( classification_cost(
input=fc, label=lbl, weight=wt), input=fc, label=lbl, weight=wt),
mse_cost( square_error_cost(
input=fc, label=lbl, weight=wt), input=fc, label=lbl, weight=wt),
nce_layer( nce_layer(
input=fc, input=fc,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册