Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
fb16fea3
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
fb16fea3
编写于
11月 09, 2022
作者:
S
Sławomir Siwek
提交者:
GitHub
11月 09, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
cleanup unused code (#47762)
上级
14f261ad
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
5 addition
and
255 deletion
+5
-255
paddle/fluid/operators/mkldnn/matmul_v2_mkldnn_op.cc
paddle/fluid/operators/mkldnn/matmul_v2_mkldnn_op.cc
+5
-255
未找到文件。
paddle/fluid/operators/mkldnn/matmul_v2_mkldnn_op.cc
浏览文件 @
fb16fea3
/* Copyright (c) 202
1
PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 202
2
PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
...
...
@@ -18,10 +18,8 @@ using dnnl::memory;
using
paddle
::
framework
::
ExecutionContext
;
using
paddle
::
platform
::
MatMulV2MKLDNNHandler
;
using
paddle
::
platform
::
MKLDNNDeviceContext
;
using
paddle
::
platform
::
MKLDNNFormatForSize
;
using
paddle
::
platform
::
MKLDNNGetDataType
;
using
paddle
::
platform
::
to_void_cast
;
using
phi
::
DataLayout
;
using
phi
::
vectorize
;
using
Tensor
=
phi
::
DenseTensor
;
using
paddle
::
framework
::
GradVarName
;
...
...
@@ -157,22 +155,6 @@ class MatMulMKLDNNHandler
this
->
AcquireForwardPrimitiveDescriptor
(
attrs
,
x_md
,
y_md
,
out_md
);
}
// Constructor for FWD MatMul
MatMulMKLDNNHandler
(
const
dnnl
::
engine
engine
,
const
ExecutionContext
&
ctx
)
:
paddle
::
platform
::
MKLDNNHandlerNoCachingT
<
XT
,
dnnl
::
matmul
>
(
engine
,
ctx
.
GetPlace
())
{
const
dnnl
::
primitive_attr
matmul_attrs
=
CreateMatmulAttrs
(
ctx
);
auto
matmul_dims_
=
GetMatmulDims
(
ctx
);
auto
x_md
=
memory
::
desc
(
matmul_dims_
.
x_dims
,
MKLDNNGetDataType
<
XT
>
(),
matmul_dims_
.
x_strides
);
auto
y_md
=
memory
::
desc
(
matmul_dims_
.
y_dims
,
MKLDNNGetDataType
<
YT
>
(),
matmul_dims_
.
y_strides
);
auto
out_md
=
memory
::
desc
(
matmul_dims_
.
out_dims
,
MKLDNNGetDataType
<
OT
>
(),
matmul_dims_
.
out_strides
);
this
->
AcquireForwardPrimitiveDescriptor
(
matmul_attrs
,
x_md
,
y_md
,
out_md
);
}
std
::
shared_ptr
<
memory
>
AcquireWeightsMemory
(
const
Tensor
*
input
)
{
const
YT
*
input_data
=
input
->
data
<
YT
>
();
...
...
@@ -201,8 +183,8 @@ class MatMulMKLDNNHandler
void
*
x_ptr
=
src_memory_p
->
get_data_handle
();
void
*
y_ptr
=
weights_memory_p
->
get_data_handle
();
void
*
out_ptr
=
dst_memory_p
->
get_data_handle
();
auto
offsets
=
this
->
GetOffsets
(
);
for
(
uint16_t
i
=
0
;
i
<
this
->
GetBatchSize
()
;
++
i
)
{
auto
offsets
=
std
::
make_tuple
(
x_offset_
,
y_offset_
,
out_offset_
);
for
(
uint16_t
i
=
0
;
i
<
batch_size_
;
++
i
)
{
src_memory_p
->
set_data_handle
(
x_ptr
);
weights_memory_p
->
set_data_handle
(
y_ptr
);
dst_memory_p
->
set_data_handle
(
out_ptr
);
...
...
@@ -229,182 +211,6 @@ class MatMulMKLDNNHandler
return
this
->
AcquireMemoryFromPrimitive
(
this
->
fwd_pd_
->
dst_desc
(),
ptr
);
}
private:
struct
MatMulDims
{
const
memory
::
dims
x_dims
,
y_dims
,
out_dims
,
x_strides
,
y_strides
,
out_strides
;
};
std
::
pair
<
phi
::
funcs
::
MatDescriptor
,
memory
::
dims
>
GetInputDimsAndStrides
(
const
ExecutionContext
&
ctx
,
std
::
string
input_name
)
{
auto
shape
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"fused_reshape_"
+
input_name
);
auto
axis
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"fused_transpose_"
+
input_name
);
auto
input_dims
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
input_name
)
->
dims
();
auto
new_dims
=
input_dims
;
if
(
!
shape
.
empty
()
&&
!
axis
.
empty
())
{
new_dims
=
input_dims
.
reshape
(
shape
).
transpose
(
axis
);
}
auto
&
MatrixDimsFromVector
=
input_name
==
"X"
?
RowMatrixDimsFromVector
:
ColumnMatrixDimsFromVector
;
phi
::
funcs
::
MatDescriptor
mat_dim
=
phi
::
funcs
::
CreateMatrixDescriptor
(
MatrixDimsFromVector
(
new_dims
),
0
,
ctx
.
Attr
<
bool
>
(
"transpose_"
+
input_name
));
memory
::
dims
strides
;
if
(
!
shape
.
empty
())
{
auto
shape2
=
input_dims
.
reshape
(
shape
);
strides
.
push_back
(
1
);
for
(
auto
i
=
shape2
.
size
()
-
1
;
i
>
0
;
--
i
)
{
strides
.
insert
(
strides
.
begin
(),
strides
.
front
()
*
shape2
[
i
]);
}
strides
=
Transpose
(
strides
,
axis
);
if
(
shape
.
size
()
==
4
)
strides
.
erase
(
strides
.
begin
());
else
if
(
shape
.
size
()
==
2
)
strides
.
insert
(
strides
.
begin
(),
shape
[
0
]
*
shape
[
1
]);
mat_dim
.
stride_
=
strides
[
0
];
if
(
mat_dim
.
trans_
)
std
::
swap
(
*
strides
.
rbegin
(),
*
(
++
strides
.
rbegin
()));
}
return
std
::
make_pair
(
mat_dim
,
strides
);
}
float
ComputeOutputScale
(
const
ExecutionContext
&
ctx
)
{
float
scale_x
=
ctx
.
Attr
<
float
>
(
"Scale_x"
);
float
scale_y
=
ctx
.
Attr
<
float
>
(
"Scale_y"
);
bool
force_fp32_out
=
ctx
.
Attr
<
bool
>
(
"force_fp32_output"
);
float
scale_out
=
force_fp32_out
?
1.
f
:
ctx
.
Attr
<
float
>
(
"Scale_out"
);
float
alpha
=
ctx
.
Attr
<
float
>
(
"alpha"
);
return
alpha
*
scale_out
/
(
scale_x
*
scale_y
);
}
bool
IsInputFused
(
const
ExecutionContext
&
ctx
)
const
{
return
!
(
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"fused_reshape_X"
).
empty
()
&&
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"fused_reshape_Y"
).
empty
());
}
bool
IsOutputFused
(
const
ExecutionContext
&
ctx
)
const
{
auto
&
fused_reshape_Out
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"fused_reshape_Out"
);
auto
&
fused_transpose_Out
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"fused_transpose_Out"
);
return
!
fused_reshape_Out
.
empty
()
&&
!
fused_transpose_Out
.
empty
();
}
MatMulDims
GetMatmulDims
(
const
ExecutionContext
&
ctx
)
{
phi
::
funcs
::
MatDescriptor
mat_dim_x
;
memory
::
dims
strides_x
;
std
::
tie
(
mat_dim_x
,
strides_x
)
=
GetInputDimsAndStrides
(
ctx
,
"X"
);
phi
::
funcs
::
MatDescriptor
mat_dim_y
;
memory
::
dims
strides_y
;
std
::
tie
(
mat_dim_y
,
strides_y
)
=
GetInputDimsAndStrides
(
ctx
,
"Y"
);
auto
x_bs
=
mat_dim_x
.
batch_size_
;
auto
y_bs
=
mat_dim_y
.
batch_size_
;
PADDLE_ENFORCE_EQ
(
x_bs
>
0
&&
y_bs
>
0
&&
x_bs
!=
y_bs
,
false
,
paddle
::
platform
::
errors
::
InvalidArgument
(
"If batch sizes of X and Y are positive,"
"they have to be equal."
));
memory
::
dim
out_bs
=
x_bs
||
y_bs
?
std
::
max
(
x_bs
,
y_bs
)
:
1
;
const
memory
::
dim
M
=
mat_dim_x
.
height_
;
const
memory
::
dim
N
=
mat_dim_y
.
width_
;
const
memory
::
dim
K
=
mat_dim_x
.
width_
;
batch_size_
=
1
;
if
(
out_bs
>
1
&&
(
IsOutputFused
(
ctx
)
||
IsInputFused
(
ctx
)))
{
auto
x_dims
=
GetDimForInput
(
ctx
,
"X"
);
auto
y_dims
=
GetDimForInput
(
ctx
,
"Y"
);
batch_size_
=
x_bs
>
y_bs
?
x_dims
[
0
]
:
y_dims
[
0
];
x_bs
/=
batch_size_
;
y_bs
/=
batch_size_
;
out_bs
/=
batch_size_
;
}
memory
::
dims
x_dims
=
{
x_bs
>
0
?
x_bs
:
1
,
M
,
K
};
memory
::
dims
y_dims
=
{
y_bs
>
0
?
y_bs
:
1
,
K
,
N
};
memory
::
dims
out_dims
=
{
out_bs
,
M
,
N
};
x_offset_
=
x_bs
*
M
*
K
*
sizeof
(
XT
);
y_offset_
=
y_bs
*
K
*
N
*
sizeof
(
YT
);
out_offset_
=
out_bs
*
M
*
N
*
sizeof
(
OT
);
// Translate transA and transB
if
(
strides_x
.
empty
())
strides_x
=
!
ctx
.
Attr
<
bool
>
(
"transpose_X"
)
?
memory
::
dims
{
M
*
K
,
K
,
1
}
:
memory
::
dims
{
M
*
K
,
1
,
M
};
if
(
strides_y
.
empty
())
strides_y
=
!
ctx
.
Attr
<
bool
>
(
"transpose_Y"
)
?
memory
::
dims
{
N
*
K
,
N
,
1
}
:
memory
::
dims
{
N
*
K
,
1
,
K
};
memory
::
dims
out_strides
=
memory
::
dims
{
M
*
N
,
N
,
1
};
CorrectStridesWhenFloatOutputFused
(
ctx
,
N
,
out_bs
,
&
out_strides
);
return
{
x_dims
,
y_dims
,
out_dims
,
strides_x
,
strides_y
,
out_strides
};
}
std
::
vector
<
int64_t
>
Transpose
(
const
std
::
vector
<
int64_t
>
&
x
,
const
std
::
vector
<
int
>
&
axis
)
{
size_t
in_rank
=
x
.
size
();
size_t
axis_size
=
axis
.
size
();
auto
axis_set
=
std
::
set
<
int
>
(
axis
.
begin
(),
axis
.
end
());
PADDLE_ENFORCE_EQ
(
axis_set
.
size
(),
axis_size
,
paddle
::
platform
::
errors
::
InvalidArgument
(
"In an axis array, elements must be unique."
));
PADDLE_ENFORCE_EQ
(
in_rank
,
axis_size
,
paddle
::
platform
::
errors
::
InvalidArgument
(
"The input dimension's size "
"should be equal to the axis's size. "
"But received dimension is %d, "
"axis's size is %d"
,
in_rank
,
axis_size
));
PADDLE_ENFORCE_LT
(
*
std
::
max_element
(
axis
.
begin
(),
axis
.
end
()),
axis_size
,
paddle
::
platform
::
errors
::
InvalidArgument
(
"Axis values must be ranging from 0 to (dims - 1)."
));
std
::
vector
<
int64_t
>
new_x
(
x
.
size
());
for
(
size_t
i
=
0
;
i
<
x
.
size
();
i
++
)
{
new_x
[
i
]
=
x
[
axis
[
i
]];
}
return
new_x
;
}
void
CorrectStridesWhenFloatOutputFused
(
const
ExecutionContext
&
ctx
,
const
memory
::
dim
N
,
memory
::
dim
b
,
memory
::
dims
*
out_strides
)
const
{
if
(
!
IsInt8
<
OT
>
()
&&
!
IsBfloat16
<
OT
>
()
&&
IsOutputFused
(
ctx
))
{
*
out_strides
=
{
N
,
b
*
N
,
1
};
}
}
uint16_t
GetBatchSize
(
void
)
const
{
return
batch_size_
;
}
std
::
tuple
<
uint32_t
,
uint32_t
,
uint32_t
>
GetOffsets
()
const
{
return
std
::
make_tuple
(
x_offset_
,
y_offset_
,
out_offset_
);
}
dnnl
::
primitive_attr
CreateMatmulAttrs
(
const
ExecutionContext
&
ctx
)
{
dnnl
::
primitive_attr
matmul_attrs
;
dnnl
::
post_ops
post_operations
;
float
scale_out
=
ComputeOutputScale
(
ctx
);
if
(
scale_out
!=
1.0
f
)
{
matmul_attrs
.
set_output_scales
(
0
,
{
scale_out
});
}
paddle
::
platform
::
AppendActivation
(
ctx
,
post_operations
);
matmul_attrs
.
set_post_ops
(
post_operations
);
return
matmul_attrs
;
}
private:
uint32_t
x_offset_
;
uint32_t
y_offset_
;
...
...
@@ -465,55 +271,8 @@ static void ReshapeXYOutToMatrixSequence(
ReshapeTensorToMatrixSequence
(
y
,
mat_dim_y
);
}
// Choose appropriate Handler instances based on inferred
// output type (uint8, int8 or float).
template
<
typename
XT
,
typename
YT
>
static
void
ExecuteMatMul
(
const
ExecutionContext
&
ctx
)
{
constexpr
bool
is_int8
=
IsInt8
<
XT
>
();
constexpr
bool
is_bfloat16
=
IsBfloat16
<
XT
>
();
const
bool
force_fp32_output
=
ctx
.
Attr
<
bool
>
(
"force_fp32_output"
);
const
bool
fuse_relu
=
ctx
.
HasAttr
(
"fuse_activation"
)
?
ctx
.
Attr
<
std
::
string
>
(
"fuse_activation"
)
==
"relu"
:
false
;
auto
*
x
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"Y"
);
auto
*
out
=
ctx
.
Output
<
phi
::
DenseTensor
>
(
"Out"
);
const
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
MKLDNNDeviceContext
>();
const
auto
&
onednn_engine
=
dev_ctx
.
GetEngine
();
if
(
force_fp32_output
||
((
!
is_int8
)
&&
(
!
is_bfloat16
)))
{
MatMulMKLDNNHandler
<
XT
,
YT
,
float
>
(
onednn_engine
,
ctx
).
Execute
(
x
,
y
,
out
);
}
else
if
(
is_bfloat16
)
{
MatMulMKLDNNHandler
<
XT
,
YT
,
paddle
::
platform
::
bfloat16
>
(
onednn_engine
,
ctx
)
.
Execute
(
x
,
y
,
out
);
}
else
if
(
fuse_relu
)
{
MatMulMKLDNNHandler
<
XT
,
YT
,
uint8_t
>
(
onednn_engine
,
ctx
).
Execute
(
x
,
y
,
out
);
}
else
{
MatMulMKLDNNHandler
<
XT
,
YT
,
int8_t
>
(
onednn_engine
,
ctx
).
Execute
(
x
,
y
,
out
);
}
}
template
<
typename
T
>
class
MatMulMKLDNNKernel
:
public
paddle
::
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
ExecutionContext
&
ctx
)
const
override
{
if
(
ctx
.
HasAttr
(
"head_number"
))
{
PADDLE_ENFORCE_EQ
(
ctx
.
Attr
<
int
>
(
"head_number"
),
1
,
paddle
::
platform
::
errors
::
Unimplemented
(
"oneDNN matmul doesn't support multiple heads. Expected "
"head_number=1. But received `head_number` is %d"
,
ctx
.
Attr
<
int
>
(
"head_number"
)));
}
ExecuteMatMul
<
T
,
T
>
(
ctx
);
}
};
static
std
::
vector
<
int64_t
>
Transpose
(
const
std
::
vector
<
int64_t
>
&
x
,
const
std
::
vector
<
int
>
&
axis
)
{
std
::
vector
<
int64_t
>
Transpose
(
const
std
::
vector
<
int64_t
>
&
x
,
const
std
::
vector
<
int
>
&
axis
)
{
size_t
in_rank
=
x
.
size
();
size_t
axis_size
=
axis
.
size
();
...
...
@@ -589,15 +348,6 @@ bool IsOutputFused(const ExecutionContext &ctx) {
return
!
fused_reshape_Out
.
empty
()
&&
!
fused_transpose_Out
.
empty
();
}
float
ComputeOutputScale
(
const
ExecutionContext
&
ctx
)
{
float
scale_x
=
ctx
.
Attr
<
float
>
(
"Scale_x"
);
float
scale_y
=
ctx
.
Attr
<
float
>
(
"Scale_y"
);
bool
force_fp32_out
=
ctx
.
Attr
<
bool
>
(
"force_fp32_output"
);
float
scale_out
=
force_fp32_out
?
1.
f
:
ctx
.
Attr
<
float
>
(
"Scale_out"
);
float
alpha
=
ctx
.
HasAttr
(
"alpha"
)
?
ctx
.
Attr
<
float
>
(
"alpha"
)
:
1.0
f
;
return
alpha
*
scale_out
/
(
scale_x
*
scale_y
);
}
template
<
typename
T
,
typename
T_out
>
void
ExecuteMatMulV2
(
const
ExecutionContext
&
ctx
,
const
MKLDNNDeviceContext
&
dev_ctx
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录