Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
fb16bdc7
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
fb16bdc7
编写于
3月 30, 2023
作者:
Y
ykkk2333
提交者:
GitHub
3月 30, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add xpu cumprod, group norm grad (#52089)
上级
93d01787
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
378 addition
and
7 deletion
+378
-7
cmake/external/xpu.cmake
cmake/external/xpu.cmake
+1
-1
paddle/phi/backends/xpu/xpu2_op_list.cc
paddle/phi/backends/xpu/xpu2_op_list.cc
+14
-0
paddle/phi/backends/xpu/xpu_context.cc
paddle/phi/backends/xpu/xpu_context.cc
+6
-1
paddle/phi/kernels/xpu/cumprod_kernel.cc
paddle/phi/kernels/xpu/cumprod_kernel.cc
+57
-0
paddle/phi/kernels/xpu/group_norm_grad_kernel.cc
paddle/phi/kernels/xpu/group_norm_grad_kernel.cc
+114
-0
paddle/phi/kernels/xpu/pool_grad_kernel.cc
paddle/phi/kernels/xpu/pool_grad_kernel.cc
+2
-4
python/paddle/fluid/tests/unittests/xpu/test_cumprod_op_xpu.py
...n/paddle/fluid/tests/unittests/xpu/test_cumprod_op_xpu.py
+181
-0
python/paddle/fluid/tests/unittests/xpu/test_group_norm_op_xpu.py
...addle/fluid/tests/unittests/xpu/test_group_norm_op_xpu.py
+3
-1
未找到文件。
cmake/external/xpu.cmake
浏览文件 @
fb16bdc7
...
...
@@ -8,7 +8,7 @@ set(XPU_API_LIB_NAME "libxpuapi.so")
set
(
XPU_RT_LIB_NAME
"libxpurt.so"
)
set
(
XPU_XFT_LIB_NAME
"libxft.so"
)
set
(
XPU_BASE_DATE
"202303
10
"
)
set
(
XPU_BASE_DATE
"202303
23
"
)
set
(
XPU_XCCL_BASE_VERSION
"1.0.13"
)
set
(
XPU_XFT_BASE_VERSION
"latest"
)
...
...
paddle/phi/backends/xpu/xpu2_op_list.cc
浏览文件 @
fb16bdc7
...
...
@@ -160,6 +160,10 @@ XPUOpMap& get_kl2_ops() {
phi
::
DataType
::
FLOAT16
,
phi
::
DataType
::
INT32
,
phi
::
DataType
::
INT64
})},
{
"cumprod"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
,
phi
::
DataType
::
INT32
,
phi
::
DataType
::
INT64
})},
{
"deformable_conv_grad"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"deformable_conv"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"deformable_conv_v1_grad"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
...
...
@@ -714,6 +718,15 @@ XPUOpMap& get_kl2_ops() {
{
"tanh"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
,
phi
::
DataType
::
FLOAT16
})},
{
"temporal_shift"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"temporal_shift_grad"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"transfer_dtype"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
,
phi
::
DataType
::
FLOAT16
,
phi
::
DataType
::
FLOAT64
,
phi
::
DataType
::
BOOL
,
phi
::
DataType
::
UINT8
,
phi
::
DataType
::
INT8
,
phi
::
DataType
::
INT64
,
phi
::
DataType
::
INT32
})},
{
"tril_triu"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
,
phi
::
DataType
::
INT32
,
...
...
@@ -844,6 +857,7 @@ XPUOpMap& get_kl2_ops() {
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
,
phi
::
DataType
::
INT32
})},
{
"randint"
,
XPUKernelSet
({
phi
::
DataType
::
INT32
,
phi
::
DataType
::
INT64
})},
{
"group_norm"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"group_norm_grad"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"meshgrid"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
,
phi
::
DataType
::
INT32
,
...
...
paddle/phi/backends/xpu/xpu_context.cc
浏览文件 @
fb16bdc7
...
...
@@ -62,7 +62,7 @@ struct XPUContext::Impl {
std
::
string
cur_thread_name
=
phi
::
GetCurrentThreadName
();
VLOG
(
3
)
<<
"XPU Dataloader: current thread at Get Context = "
<<
phi
::
GetCurrentThreadName
();
bool
is_dataloader_thread
=
(
cur_thread_name
.
substr
(
0
,
10
)
==
"Dataloader
"
);
bool
is_dataloader_thread
=
(
cur_thread_name
!=
"MainThread
"
);
return
is_dataloader_thread
;
}
...
...
@@ -146,6 +146,11 @@ struct XPUContext::Impl {
backends
::
xpu
::
XPUDeviceGuard
guard
(
place_
.
GetDeviceId
());
PD_CHECK
(
context_
!=
nullptr
,
"the xpu context is nullptr."
);
xpu_wait
(
context_
->
xpu_stream
);
xpu
::
Context
*
ctx_t
=
GetXdlCtx
();
if
(
ctx_t
)
{
PD_CHECK
(
ctx_t
!=
nullptr
,
"the xpu dataloader context is nullptr."
);
xpu_wait
(
ctx_t
->
xpu_stream
);
}
}
void
Init
()
{
...
...
paddle/phi/kernels/xpu/cumprod_kernel.cc
0 → 100644
浏览文件 @
fb16bdc7
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/cumprod_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/complex_functors.h"
#include "paddle/phi/kernels/funcs/cumprod.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
CumprodKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
input
,
int
dim
,
DenseTensor
*
out
)
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
const
DenseTensor
*
x
=
&
input
;
auto
*
x_data
=
x
->
data
<
T
>
();
auto
*
out_data
=
dev_ctx
.
template
Alloc
<
T
>(
out
);
DDim
shape
=
x
->
dims
();
std
::
vector
<
int64_t
>
xshape
=
phi
::
vectorize
<
int64_t
>
(
shape
);
if
(
dim
<
0
)
dim
+=
xshape
.
size
();
if
(
shape
.
size
()
==
0
)
{
int
r
=
xpu
::
copy
<
XPUType
>
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
input
.
data
<
T
>
()),
reinterpret_cast
<
XPUType
*>
(
out
->
data
<
T
>
()),
input
.
numel
());
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"copy"
);
return
;
}
int
r
=
xpu
::
cumprod
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
x_data
),
reinterpret_cast
<
XPUType
*>
(
out_data
),
xshape
,
dim
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"cumprod"
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
cumprod
,
XPU
,
ALL_LAYOUT
,
phi
::
CumprodKernel
,
float
,
int
,
int64_t
)
{}
paddle/phi/kernels/xpu/group_norm_grad_kernel.cc
0 → 100644
浏览文件 @
fb16bdc7
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/group_norm_grad_kernel.h"
#include <algorithm>
#include <array>
#include <numeric>
#include <string>
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/common/layout.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/math_function.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
GroupNormGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
paddle
::
optional
<
DenseTensor
>&
scale
,
const
paddle
::
optional
<
DenseTensor
>&
bias
,
const
DenseTensor
&
y
,
const
DenseTensor
&
mean
,
const
DenseTensor
&
var
,
const
DenseTensor
&
d_y
,
float
epsilon
,
int
groups
,
const
std
::
string
&
data_layout_str
,
DenseTensor
*
d_x
,
DenseTensor
*
d_scale
,
DenseTensor
*
d_bias
)
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
const
DataLayout
data_layout
=
phi
::
StringToDataLayout
(
data_layout_str
);
const
auto
scale_ptr
=
scale
.
get_ptr
();
const
auto
bias_ptr
=
bias
.
get_ptr
();
const
auto
x_dims
=
phi
::
vectorize
<
int
>
(
x
.
dims
());
const
int
N
=
x_dims
[
0
];
const
bool
channel_first
=
data_layout
==
DataLayout
::
kNCHW
||
data_layout
==
DataLayout
::
kNCDHW
;
const
int
C
=
(
channel_first
?
x_dims
[
1
]
:
x_dims
[
x_dims
.
size
()
-
1
]);
const
int
L
=
(
channel_first
?
std
::
accumulate
(
x_dims
.
begin
()
+
2
,
x_dims
.
end
(),
1
,
std
::
multiplies
<
int
>
())
:
std
::
accumulate
(
x_dims
.
begin
()
+
1
,
x_dims
.
end
()
-
1
,
1
,
std
::
multiplies
<
int
>
()));
dev_ctx
.
template
Alloc
<
T
>(
d_x
);
phi
::
funcs
::
SetConstant
<
XPUContext
,
T
>
set_zero
;
auto
*
x_data
=
x
.
data
<
T
>
();
auto
*
y_data
=
y
.
data
<
T
>
();
auto
*
d_x_data
=
d_x
->
data
<
T
>
();
auto
*
d_y_data
=
d_y
.
data
<
T
>
();
auto
*
mean_data
=
mean
.
data
<
T
>
();
auto
*
var_data
=
var
.
data
<
T
>
();
T
*
d_scale_data
=
nullptr
;
if
(
d_scale
)
{
dev_ctx
.
template
Alloc
<
T
>(
d_scale
);
set_zero
(
dev_ctx
,
d_scale
,
static_cast
<
T
>
(
0
));
d_scale_data
=
d_scale
->
data
<
T
>
();
}
T
*
d_bias_data
=
nullptr
;
if
(
d_bias
)
{
dev_ctx
.
template
Alloc
<
T
>(
d_bias
);
set_zero
(
dev_ctx
,
d_bias
,
static_cast
<
T
>
(
0
));
d_bias_data
=
d_bias
->
data
<
T
>
();
}
const
T
*
scale_data
=
nullptr
;
if
(
scale_ptr
)
scale_data
=
scale_ptr
->
data
<
T
>
();
const
T
*
bias_data
=
nullptr
;
if
(
bias_ptr
)
bias_data
=
bias_ptr
->
data
<
T
>
();
int
r
=
xpu
::
group_norm_grad
<
XPUType
>
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
x_data
),
reinterpret_cast
<
const
XPUType
*>
(
y_data
),
reinterpret_cast
<
const
XPUType
*>
(
d_y_data
),
reinterpret_cast
<
XPUType
*>
(
d_x_data
),
N
,
C
,
L
,
1
,
groups
,
static_cast
<
XPUType
>
(
epsilon
),
reinterpret_cast
<
const
XPUType
*>
(
scale_data
),
reinterpret_cast
<
const
XPUType
*>
(
bias_data
),
reinterpret_cast
<
const
XPUType
*>
(
mean_data
),
reinterpret_cast
<
const
XPUType
*>
(
var_data
),
reinterpret_cast
<
XPUType
*>
(
d_scale_data
),
reinterpret_cast
<
XPUType
*>
(
d_bias_data
),
channel_first
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"group_norm_grad"
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
group_norm_grad
,
XPU
,
ALL_LAYOUT
,
phi
::
GroupNormGradKernel
,
float
)
{}
paddle/phi/kernels/xpu/pool_grad_kernel.cc
浏览文件 @
fb16bdc7
...
...
@@ -116,8 +116,7 @@ void Pool2dGradKernel(const Context& ctx,
// and broadcast kernels to get same output, but better performance.
// Since the dim is special in particular models,
// use 'export XPU_POOLING_GRAD_SPECIAL=1' to open this path
if
(
out_h
==
1
&&
out_w
==
1
&&
std
::
is_same
<
T
,
float
>::
value
&&
std
::
getenv
(
"XPU_POOLING_GRAD_SPECIAL"
)
!=
nullptr
)
{
if
(
out_h
==
1
&&
out_w
==
1
&&
std
::
is_same
<
T
,
float
>::
value
)
{
xpu
::
ctx_guard
RAII_GUARD
(
ctx
.
x_context
());
float
scale
=
1.0
/
(
in_h
*
in_w
);
float
*
scaled_dy
=
RAII_GUARD
.
alloc_l3_or_gm
<
float
>
(
n
*
c
);
...
...
@@ -301,8 +300,7 @@ void Pool3dGradKernel(const Context& ctx,
}
else
if
(
pooling_type
==
"avg"
)
{
if
(
out_d
==
1
&&
out_h
==
1
&&
out_w
==
1
&&
std
::
is_same
<
T
,
float
>::
value
&&
std
::
getenv
(
"XPU_POOLING_GRAD_SPECIAL"
)
!=
nullptr
)
{
std
::
is_same
<
T
,
float
>::
value
)
{
xpu
::
ctx_guard
RAII_GUARD
(
ctx
.
x_context
());
float
scale
=
1.0
/
(
in_d
*
in_h
*
in_w
);
float
*
scaled_dy
=
RAII_GUARD
.
alloc_l3_or_gm
<
float
>
(
n
*
c
);
...
...
python/paddle/fluid/tests/unittests/xpu/test_cumprod_op_xpu.py
0 → 100644
浏览文件 @
fb16bdc7
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
random
import
sys
import
unittest
import
numpy
as
np
sys
.
path
.
append
(
".."
)
from
op_test_xpu
import
XPUOpTest
from
xpu.get_test_cover_info
import
(
XPUOpTestWrapper
,
create_test_class
,
get_xpu_op_support_types
,
)
import
paddle
np
.
random
.
seed
(
0
)
# define cumprod grad function.
def
cumprod_grad
(
x
,
y
,
dy
,
dx
,
shape
,
dim
):
if
dim
<
0
:
dim
+=
len
(
shape
)
mid_dim
=
shape
[
dim
]
outer_dim
=
1
inner_dim
=
1
for
i
in
range
(
0
,
dim
):
outer_dim
*=
shape
[
i
]
for
i
in
range
(
dim
+
1
,
len
(
shape
)):
inner_dim
*=
shape
[
i
]
for
i
in
range
(
outer_dim
):
for
k
in
range
(
inner_dim
):
for
j
in
range
(
mid_dim
):
index
=
i
*
mid_dim
*
inner_dim
+
j
*
inner_dim
+
k
for
n
in
range
(
mid_dim
):
pos
=
i
*
mid_dim
*
inner_dim
+
n
*
inner_dim
+
k
elem
=
0
if
j
==
0
:
elem
=
dy
[
pos
]
else
:
elem
=
dy
[
pos
]
*
y
[
index
-
inner_dim
]
if
pos
>
index
:
for
m
in
range
(
index
+
inner_dim
,
pos
+
inner_dim
,
inner_dim
):
elem
*=
x
[
m
]
elif
pos
<
index
:
elem
=
0
dx
[
index
]
+=
elem
# test function.
class
XPUTestCumprodOP
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'cumprod'
self
.
use_dynamic_create_class
=
False
class
TestCumprod
(
XPUOpTest
):
def
init_params
(
self
):
self
.
shape
=
(
2
,
3
,
4
,
5
)
self
.
zero_nums
=
[
0
,
10
,
20
,
30
,
int
(
np
.
prod
(
self
.
shape
))]
def
init_dtype
(
self
):
self
.
dtype
=
self
.
in_type
def
setUp
(
self
):
paddle
.
enable_static
()
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
init_params
()
self
.
init_dtype
()
self
.
op_type
=
"cumprod"
self
.
python_api
=
paddle
.
cumprod
self
.
inputs
=
{
'X'
:
None
}
self
.
outputs
=
{
'Out'
:
None
}
self
.
attrs
=
{
'dim'
:
None
}
def
prepare_inputs_outputs_attrs
(
self
,
dim
,
zero_num
):
self
.
x
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
+
0.5
if
zero_num
>
0
:
zero_num
=
min
(
zero_num
,
self
.
x
.
size
)
shape
=
self
.
x
.
shape
self
.
x
=
self
.
x
.
flatten
()
indices
=
random
.
sample
(
range
(
self
.
x
.
size
),
zero_num
)
for
i
in
indices
:
self
.
x
[
i
]
=
0
self
.
x
=
np
.
reshape
(
self
.
x
,
self
.
shape
)
self
.
out
=
np
.
cumprod
(
self
.
x
,
axis
=
dim
)
self
.
inputs
=
{
'X'
:
self
.
x
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'dim'
:
dim
}
def
init_grad_input_output
(
self
,
dim
):
reshape_x
=
self
.
x
.
reshape
(
self
.
x
.
size
)
self
.
grad_out
=
np
.
ones
(
self
.
x
.
size
,
self
.
dtype
)
self
.
grad_x
=
np
.
zeros
(
self
.
x
.
size
,
self
.
dtype
)
out_data
=
self
.
out
.
reshape
(
self
.
x
.
size
)
if
self
.
dtype
==
np
.
complex128
or
self
.
dtype
==
np
.
complex64
:
reshape_x
=
np
.
conj
(
reshape_x
)
out_data
=
np
.
conj
(
out_data
)
cumprod_grad
(
reshape_x
,
out_data
,
self
.
grad_out
,
self
.
grad_x
,
self
.
shape
,
dim
)
self
.
grad_x
=
self
.
grad_x
.
reshape
(
self
.
shape
)
self
.
grad_out
=
self
.
grad_out
.
reshape
(
self
.
shape
)
# test forward.
def
test_check_output
(
self
):
for
dim
in
range
(
-
len
(
self
.
shape
),
len
(
self
.
shape
)):
for
zero_num
in
self
.
zero_nums
:
self
.
prepare_inputs_outputs_attrs
(
dim
,
zero_num
)
self
.
check_output_with_place
(
self
.
place
)
# test backward.
def
test_check_grad
(
self
):
pass
# test api.
class
TestCumprodAPI
(
unittest
.
TestCase
):
def
init_dtype
(
self
):
self
.
dtype
=
'float32'
self
.
shape
=
[
2
,
3
,
10
,
10
]
def
setUp
(
self
):
paddle
.
enable_static
()
self
.
init_dtype
()
self
.
x
=
(
np
.
random
.
rand
(
2
,
3
,
10
,
10
)
+
0.5
).
astype
(
self
.
dtype
)
self
.
place
=
[
paddle
.
XPUPlace
(
0
)]
# test static graph api.
def
test_static_api
(
self
):
paddle
.
enable_static
()
def
run
(
place
):
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
x
=
paddle
.
static
.
data
(
'X'
,
self
.
shape
,
dtype
=
self
.
dtype
)
out
=
paddle
.
cumprod
(
x
,
-
2
)
exe
=
paddle
.
static
.
Executor
(
place
)
res
=
exe
.
run
(
feed
=
{
'X'
:
self
.
x
},
fetch_list
=
[
out
])
out_ref
=
np
.
cumprod
(
self
.
x
,
-
2
)
for
r
in
res
:
np
.
testing
.
assert_allclose
(
out_ref
,
r
,
rtol
=
1e-05
)
for
place
in
self
.
place
:
run
(
place
)
# test dynamic graph api.
def
test_dygraph_api
(
self
):
def
run
(
place
):
paddle
.
disable_static
(
place
)
x
=
paddle
.
to_tensor
(
self
.
x
)
out
=
paddle
.
cumprod
(
x
,
1
)
out_ref
=
np
.
cumprod
(
self
.
x
,
1
)
np
.
testing
.
assert_allclose
(
out_ref
,
out
.
numpy
(),
rtol
=
1e-05
)
paddle
.
enable_static
()
for
place
in
self
.
place
:
run
(
place
)
support_types
=
get_xpu_op_support_types
(
'cumprod'
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestCumprodOP
,
stype
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/xpu/test_group_norm_op_xpu.py
浏览文件 @
fb16bdc7
...
...
@@ -92,7 +92,9 @@ class XPUTestGroupNormOp(XPUOpTestWrapper):
self
.
check_output_with_place
(
paddle
.
XPUPlace
(
0
))
def
test_check_grad
(
self
):
pass
self
.
check_grad_with_place
(
paddle
.
XPUPlace
(
0
),
[
'X'
,
'Scale'
,
'Bias'
],
'Y'
)
class
TestGroupNormOp2
(
TestGroupNormOp
):
def
init_test_case
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录