Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
fad06cb9
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
fad06cb9
编写于
3月 07, 2019
作者:
L
luotao1
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
unify ZeroCopy in analysis_test
上级
9be825a9
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
96 addition
and
69 deletion
+96
-69
paddle/fluid/inference/api/helper.h
paddle/fluid/inference/api/helper.h
+11
-4
paddle/fluid/inference/tests/api/analyzer_pyramid_dnn_tester.cc
.../fluid/inference/tests/api/analyzer_pyramid_dnn_tester.cc
+3
-0
paddle/fluid/inference/tests/api/tester_helper.h
paddle/fluid/inference/tests/api/tester_helper.h
+82
-65
未找到文件。
paddle/fluid/inference/api/helper.h
浏览文件 @
fad06cb9
...
@@ -127,9 +127,8 @@ static void TensorAssignData(PaddleTensor *tensor,
...
@@ -127,9 +127,8 @@ static void TensorAssignData(PaddleTensor *tensor,
}
}
template
<
typename
T
>
template
<
typename
T
>
static
int
ZeroCopyTensorAssignData
(
ZeroCopyTensor
*
tensor
,
static
void
ZeroCopyTensorAssignData
(
ZeroCopyTensor
*
tensor
,
const
std
::
vector
<
std
::
vector
<
T
>>
&
data
)
{
const
std
::
vector
<
std
::
vector
<
T
>>
&
data
)
{
int
size
{
0
};
auto
*
ptr
=
tensor
->
mutable_data
<
T
>
(
PaddlePlace
::
kCPU
);
auto
*
ptr
=
tensor
->
mutable_data
<
T
>
(
PaddlePlace
::
kCPU
);
int
c
=
0
;
int
c
=
0
;
for
(
const
auto
&
f
:
data
)
{
for
(
const
auto
&
f
:
data
)
{
...
@@ -137,7 +136,15 @@ static int ZeroCopyTensorAssignData(ZeroCopyTensor *tensor,
...
@@ -137,7 +136,15 @@ static int ZeroCopyTensorAssignData(ZeroCopyTensor *tensor,
ptr
[
c
++
]
=
v
;
ptr
[
c
++
]
=
v
;
}
}
}
}
return
size
;
}
template
<
typename
T
>
static
void
ZeroCopyTensorAssignData
(
ZeroCopyTensor
*
tensor
,
const
PaddleBuf
&
data
)
{
auto
*
ptr
=
tensor
->
mutable_data
<
T
>
(
PaddlePlace
::
kCPU
);
for
(
size_t
i
=
0
;
i
<
data
.
length
()
/
sizeof
(
T
);
i
++
)
{
ptr
[
i
]
=
*
(
reinterpret_cast
<
T
*>
(
data
.
data
())
+
i
);
}
}
}
static
bool
CompareTensor
(
const
PaddleTensor
&
a
,
const
PaddleTensor
&
b
)
{
static
bool
CompareTensor
(
const
PaddleTensor
&
a
,
const
PaddleTensor
&
b
)
{
...
...
paddle/fluid/inference/tests/api/analyzer_pyramid_dnn_tester.cc
浏览文件 @
fad06cb9
...
@@ -107,6 +107,9 @@ void SetConfig(AnalysisConfig *cfg) {
...
@@ -107,6 +107,9 @@ void SetConfig(AnalysisConfig *cfg) {
cfg
->
DisableGpu
();
cfg
->
DisableGpu
();
cfg
->
SwitchSpecifyInputNames
();
cfg
->
SwitchSpecifyInputNames
();
cfg
->
SwitchIrOptim
();
cfg
->
SwitchIrOptim
();
if
(
FLAGS_zero_copy
)
{
cfg
->
SwitchUseFeedFetchOps
(
false
);
}
}
}
void
SetInput
(
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
*
inputs
)
{
void
SetInput
(
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
*
inputs
)
{
...
...
paddle/fluid/inference/tests/api/tester_helper.h
浏览文件 @
fad06cb9
...
@@ -51,6 +51,7 @@ DEFINE_bool(use_analysis, true,
...
@@ -51,6 +51,7 @@ DEFINE_bool(use_analysis, true,
DEFINE_bool
(
record_benchmark
,
false
,
DEFINE_bool
(
record_benchmark
,
false
,
"Record benchmark after profiling the model"
);
"Record benchmark after profiling the model"
);
DEFINE_double
(
accuracy
,
1e-3
,
"Result Accuracy."
);
DEFINE_double
(
accuracy
,
1e-3
,
"Result Accuracy."
);
DEFINE_bool
(
zero_copy
,
false
,
"Use ZeroCopy to speedup Feed/Fetch."
);
DECLARE_bool
(
profile
);
DECLARE_bool
(
profile
);
DECLARE_int32
(
paddle_num_threads
);
DECLARE_int32
(
paddle_num_threads
);
...
@@ -198,61 +199,104 @@ void GetInputPerBatch(const std::vector<std::vector<int64_t>> &in,
...
@@ -198,61 +199,104 @@ void GetInputPerBatch(const std::vector<std::vector<int64_t>> &in,
}
}
}
}
void
TestOneThreadPrediction
(
void
ConvertPaddleTensorToZeroCopyTensor
(
const
PaddlePredictor
::
Config
*
config
,
PaddlePredictor
*
predictor
,
const
std
::
vector
<
PaddleTensor
>
&
inputs
)
{
const
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
&
inputs
,
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
i
++
)
{
std
::
vector
<
PaddleTensor
>
*
outputs
,
bool
use_analysis
=
true
)
{
auto
input
=
inputs
[
i
];
int
batch_size
=
FLAGS_batch_size
;
auto
tensor
=
predictor
->
GetInputTensor
(
input
.
name
);
int
num_times
=
FLAGS_repeat
;
tensor
->
Reshape
(
input
.
shape
);
auto
predictor
=
CreateTestPredictor
(
config
,
use_analysis
);
tensor
->
SetLoD
({
input
.
lod
});
if
(
input
.
dtype
==
PaddleDType
::
INT64
)
{
ZeroCopyTensorAssignData
<
int64_t
>
(
tensor
.
get
(),
input
.
data
);
}
else
if
(
input
.
dtype
==
PaddleDType
::
FLOAT32
)
{
ZeroCopyTensorAssignData
<
float
>
(
tensor
.
get
(),
input
.
data
);
}
else
{
LOG
(
ERROR
)
<<
"unsupported feed type "
<<
input
.
dtype
;
}
}
}
// warmup run
void
PredictionWarmUp
(
PaddlePredictor
*
predictor
,
LOG
(
INFO
)
<<
"Warm up run..."
;
const
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
&
inputs
,
{
std
::
vector
<
PaddleTensor
>
*
outputs
,
int
num_threads
,
Timer
warmup_timer
;
int
tid
)
{
warmup_timer
.
tic
();
int
batch_size
=
FLAGS_batch_size
;
LOG
(
INFO
)
<<
"Running thread "
<<
tid
<<
", warm up run..."
;
if
(
FLAGS_zero_copy
)
{
ConvertPaddleTensorToZeroCopyTensor
(
predictor
,
inputs
[
0
]);
}
Timer
warmup_timer
;
warmup_timer
.
tic
();
if
(
!
FLAGS_zero_copy
)
{
predictor
->
Run
(
inputs
[
0
],
outputs
,
batch_size
);
predictor
->
Run
(
inputs
[
0
],
outputs
,
batch_size
);
PrintTime
(
batch_size
,
1
,
1
,
0
,
warmup_timer
.
toc
(),
1
);
}
else
{
if
(
FLAGS_profile
)
{
predictor
->
ZeroCopyRun
();
paddle
::
platform
::
ResetProfiler
();
}
}
}
PrintTime
(
batch_size
,
1
,
num_threads
,
tid
,
warmup_timer
.
toc
(),
1
);
if
(
FLAGS_profile
)
{
paddle
::
platform
::
ResetProfiler
();
}
}
LOG
(
INFO
)
<<
"Run "
<<
num_times
<<
" times..."
;
void
PredictionRun
(
PaddlePredictor
*
predictor
,
{
const
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
&
inputs
,
Timer
run_timer
;
std
::
vector
<
PaddleTensor
>
*
outputs
,
int
num_threads
,
run_timer
.
tic
();
int
tid
)
{
int
batch_size
=
FLAGS_batch_size
;
int
num_times
=
FLAGS_repeat
;
LOG
(
INFO
)
<<
"Thread "
<<
tid
<<
" run "
<<
num_times
<<
" times..."
;
Timer
run_timer
;
double
elapsed_time
=
0
;
#ifdef WITH_GPERFTOOLS
#ifdef WITH_GPERFTOOLS
ProfilerStart
(
"paddle_inference.prof"
);
ProfilerStart
(
"paddle_inference.prof"
);
#endif
#endif
for
(
int
i
=
0
;
i
<
num_times
;
i
++
)
{
if
(
!
FLAGS_zero_copy
)
{
for
(
size_t
j
=
0
;
j
<
inputs
.
size
();
j
++
)
{
run_timer
.
tic
();
predictor
->
Run
(
inputs
[
j
],
outputs
,
batch_size
);
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
i
++
)
{
for
(
int
j
=
0
;
j
<
num_times
;
j
++
)
{
predictor
->
Run
(
inputs
[
i
],
outputs
,
batch_size
);
}
}
}
}
elapsed_time
=
run_timer
.
toc
();
}
else
{
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
i
++
)
{
ConvertPaddleTensorToZeroCopyTensor
(
predictor
,
inputs
[
i
]);
run_timer
.
tic
();
for
(
int
j
=
0
;
j
<
num_times
;
j
++
)
{
predictor
->
ZeroCopyRun
();
}
elapsed_time
+=
run_timer
.
toc
();
}
}
#ifdef WITH_GPERFTOOLS
#ifdef WITH_GPERFTOOLS
ProfilerStop
();
ProfilerStop
();
#endif
#endif
double
latency
=
run_timer
.
toc
()
/
(
num_times
>
1
?
num_times
:
1
);
PrintTime
(
batch_size
,
num_times
,
num_threads
,
tid
,
elapsed_time
/
num_times
,
PrintTime
(
batch_size
,
num_times
,
1
,
0
,
latency
,
inputs
.
size
());
inputs
.
size
());
if
(
FLAGS_record_benchmark
)
{
if
(
FLAGS_record_benchmark
)
{
Benchmark
benchmark
;
Benchmark
benchmark
;
benchmark
.
SetName
(
FLAGS_model_name
);
benchmark
.
SetName
(
FLAGS_model_name
);
benchmark
.
SetBatchSize
(
batch_size
);
benchmark
.
SetBatchSize
(
batch_size
);
benchmark
.
SetLatency
(
latency
);
benchmark
.
SetLatency
(
elapsed_time
/
num_times
);
benchmark
.
PersistToFile
(
"benchmark_record.txt"
);
benchmark
.
PersistToFile
(
"benchmark_record.txt"
);
}
}
}
}
}
void
TestOneThreadPrediction
(
const
PaddlePredictor
::
Config
*
config
,
const
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
&
inputs
,
std
::
vector
<
PaddleTensor
>
*
outputs
,
bool
use_analysis
=
true
)
{
auto
predictor
=
CreateTestPredictor
(
config
,
use_analysis
);
PredictionWarmUp
(
predictor
.
get
(),
inputs
,
outputs
,
1
,
0
);
PredictionRun
(
predictor
.
get
(),
inputs
,
outputs
,
1
,
0
);
}
void
TestMultiThreadPrediction
(
void
TestMultiThreadPrediction
(
const
PaddlePredictor
::
Config
*
config
,
const
PaddlePredictor
::
Config
*
config
,
const
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
&
inputs
,
const
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
&
inputs
,
std
::
vector
<
PaddleTensor
>
*
outputs
,
int
num_threads
,
std
::
vector
<
PaddleTensor
>
*
outputs
,
int
num_threads
,
bool
use_analysis
=
true
)
{
bool
use_analysis
=
true
)
{
int
batch_size
=
FLAGS_batch_size
;
int
num_times
=
FLAGS_repeat
;
std
::
vector
<
std
::
thread
>
threads
;
std
::
vector
<
std
::
thread
>
threads
;
std
::
vector
<
std
::
unique_ptr
<
PaddlePredictor
>>
predictors
;
std
::
vector
<
std
::
unique_ptr
<
PaddlePredictor
>>
predictors
;
predictors
.
emplace_back
(
CreateTestPredictor
(
config
,
use_analysis
));
predictors
.
emplace_back
(
CreateTestPredictor
(
config
,
use_analysis
));
...
@@ -260,7 +304,6 @@ void TestMultiThreadPrediction(
...
@@ -260,7 +304,6 @@ void TestMultiThreadPrediction(
predictors
.
emplace_back
(
predictors
.
front
()
->
Clone
());
predictors
.
emplace_back
(
predictors
.
front
()
->
Clone
());
}
}
size_t
total_time
{
0
};
for
(
int
tid
=
0
;
tid
<
num_threads
;
++
tid
)
{
for
(
int
tid
=
0
;
tid
<
num_threads
;
++
tid
)
{
threads
.
emplace_back
([
&
,
tid
]()
{
threads
.
emplace_back
([
&
,
tid
]()
{
// Each thread should have local inputs and outputs.
// Each thread should have local inputs and outputs.
...
@@ -273,34 +316,8 @@ void TestMultiThreadPrediction(
...
@@ -273,34 +316,8 @@ void TestMultiThreadPrediction(
->
SetMkldnnThreadID
(
static_cast
<
int
>
(
tid
)
+
1
);
->
SetMkldnnThreadID
(
static_cast
<
int
>
(
tid
)
+
1
);
}
}
#endif
#endif
PredictionWarmUp
(
predictor
.
get
(),
inputs
,
outputs
,
num_threads
,
tid
);
// warmup run
PredictionRun
(
predictor
.
get
(),
inputs
,
outputs
,
num_threads
,
tid
);
LOG
(
INFO
)
<<
"Running thread "
<<
tid
<<
", warm up run..."
;
{
Timer
warmup_timer
;
warmup_timer
.
tic
();
predictor
->
Run
(
inputs
[
0
],
outputs
,
batch_size
);
PrintTime
(
batch_size
,
1
,
num_threads
,
tid
,
warmup_timer
.
toc
(),
1
);
if
(
FLAGS_profile
)
{
paddle
::
platform
::
ResetProfiler
();
}
}
LOG
(
INFO
)
<<
"Thread "
<<
tid
<<
" run "
<<
num_times
<<
" times..."
;
{
Timer
timer
;
timer
.
tic
();
for
(
int
i
=
0
;
i
<
num_times
;
i
++
)
{
for
(
const
auto
&
input
:
inputs
)
{
ASSERT_TRUE
(
predictor
->
Run
(
input
,
&
outputs_tid
));
}
}
auto
time
=
timer
.
toc
();
total_time
+=
time
;
PrintTime
(
batch_size
,
num_times
,
num_threads
,
tid
,
time
/
num_times
,
inputs
.
size
());
}
});
});
}
}
for
(
int
i
=
0
;
i
<
num_threads
;
++
i
)
{
for
(
int
i
=
0
;
i
<
num_threads
;
++
i
)
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录