Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
faad8351
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2305
Star
20932
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
faad8351
编写于
11月 03, 2017
作者:
G
guosheng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refine GRU Operator by following comments
上级
23a631d4
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
12 addition
and
57 deletion
+12
-57
paddle/operators/gru_op.cc
paddle/operators/gru_op.cc
+10
-9
paddle/operators/math/gru_compute.h
paddle/operators/math/gru_compute.h
+0
-22
python/paddle/v2/framework/tests/test_gru_op.py
python/paddle/v2/framework/tests/test_gru_op.py
+2
-26
未找到文件。
paddle/operators/gru_op.cc
浏览文件 @
faad8351
...
...
@@ -61,8 +61,6 @@ class GRUOp : public framework::OperatorWithKernel {
ctx
->
SetOutputDim
(
"BatchResetHiddenPrev"
,
{
input_dims
[
0
],
frame_size
});
ctx
->
SetOutputDim
(
"BatchHidden"
,
{
input_dims
[
0
],
frame_size
});
ctx
->
SetOutputDim
(
"Hidden"
,
{
input_dims
[
0
],
frame_size
});
// ctx->ShareLoD("Input", "Gate");
// ctx->ShareLoD("Input", "ResetHiddenPrev");
ctx
->
ShareLoD
(
"Input"
,
"Hidden"
);
}
};
...
...
@@ -72,7 +70,7 @@ class GRUOpMaker : public framework::OpProtoAndCheckerMaker {
GRUOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"Input"
,
"(LoDTensor) The first input is a LodTensor, which support "
"(LoDTensor) The first input is a LodTensor, which support
s
"
"variable-time length input sequence. The underlying tensor in "
"this LoDTenosr is a matrix with shape (T X 3D), where, T is the "
"total time steps in this mini-batch, D is the hidden size."
);
...
...
@@ -132,14 +130,17 @@ class GRUOpMaker : public framework::OpProtoAndCheckerMaker {
"whether to compute reversed GRU."
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
GRUOp implements part calculations of the GRU as following:
GRU Operator implements part calculations of the complete GRU as following:
\f[
update \ gate: u_t = actGate(xu_t + W_u * h
idden_prev + bias
_u) \\
reset \ gate: r_t = actGate(xr_t + W_r * h
idden_prev + bias
_r) \\
output \ candidate: {h}_t = actNode(xc_t + W_c * dot(r_t, h
idden_prev) + bias
_c) \\
output: h_t = dot((1
-u_t), hidden_prev
) + dot(u_t, {h}_t)
update \ gate: u_t = actGate(xu_t + W_u * h
_{t-1} + b
_u) \\
reset \ gate: r_t = actGate(xr_t + W_r * h
_{t-1} + b
_r) \\
output \ candidate: {h}_t = actNode(xc_t + W_c * dot(r_t, h
_{t-1}) + b
_c) \\
output: h_t = dot((1
- u_t), h_{t-1}
) + dot(u_t, {h}_t)
\f]
The rest of GRU can be completed by using FCOp's output as the input of GRUOp.
@note To implement the complete GRU, fully-connected operator must be used
before to feed xu, xr and xc as the Input of GRU operator.
)DOC"
);
}
};
...
...
paddle/operators/math/gru_compute.h
浏览文件 @
faad8351
...
...
@@ -19,28 +19,6 @@ namespace paddle {
namespace
operators
{
namespace
math
{
// typedef enum {
// HL_ACTIVATION_SIGMOID = 0,
// HL_ACTIVATION_RELU = 1,
// HL_ACTIVATION_TANH = 2,
// HL_ACTIVATION_LINEAR = 3,
// HL_ACTIVATION_END
// } activation_mode_t;
// inline activation_mode_t ActiveType(const std::string &type) {
// if (type == "sigmoid") {
// return HL_ACTIVATION_SIGMOID;
// } else if (type == "relu") {
// return HL_ACTIVATION_RELU;
// } else if (type == "tanh") {
// return HL_ACTIVATION_TANH;
// } else if (type == "linear" || type == "") {
// return HL_ACTIVATION_LINEAR;
// } else {
// PADDLE_THROW("Do not support activation type.");
// }
// }
template
<
typename
T
>
struct
hl_gru_value
{
T
*
gateWeight
;
...
...
python/paddle/v2/framework/tests/test_gru_op.py
浏览文件 @
faad8351
...
...
@@ -2,31 +2,7 @@ import unittest
import
numpy
as
np
import
math
from
op_test
import
OpTest
SIGMOID_THRESHOLD_MIN
=
-
40.0
SIGMOID_THRESHOLD_MAX
=
13.0
EXP_MAX_INPUT
=
40.0
def
identity
(
x
):
return
x
def
sigmoid
(
x
):
y
=
np
.
copy
(
x
)
y
[
x
<
SIGMOID_THRESHOLD_MIN
]
=
SIGMOID_THRESHOLD_MIN
y
[
x
>
SIGMOID_THRESHOLD_MAX
]
=
SIGMOID_THRESHOLD_MAX
return
1.
/
(
1.
+
np
.
exp
(
-
y
))
def
tanh
(
x
):
y
=
-
2.
*
x
y
[
y
>
EXP_MAX_INPUT
]
=
EXP_MAX_INPUT
return
(
2.
/
(
1.
+
np
.
exp
(
y
)))
-
1.
def
relu
(
x
):
return
np
.
maximum
(
x
,
0
)
from
test_lstm_op
import
identity
,
sigmoid
,
tanh
,
relu
class
TestGRUOp
(
OpTest
):
...
...
@@ -108,7 +84,7 @@ class TestGRUOp(OpTest):
return
batch_gate
,
batch_reset_hidden_prev
,
hidden
def
set_data
(
self
):
lod
=
[[
0
,
2
,
6
,
9
]]
lod
=
[[
0
,
2
,
6
,
self
.
batch_size
]]
self
.
idx_in_seq_list
=
self
.
seq_to_batch
(
lod
,
self
.
is_reverse
)
batch_size
=
self
.
batch_size
frame_size
=
self
.
frame_size
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录