Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
fa722385
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
fa722385
编写于
9月 20, 2017
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine test_MKLDNN and skip memory copy for relu
上级
d865b047
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
65 addition
and
67 deletion
+65
-67
paddle/gserver/activations/MKLDNNActivation.h
paddle/gserver/activations/MKLDNNActivation.h
+3
-2
paddle/gserver/tests/test_MKLDNN.cpp
paddle/gserver/tests/test_MKLDNN.cpp
+62
-65
未找到文件。
paddle/gserver/activations/MKLDNNActivation.h
浏览文件 @
fa722385
...
@@ -131,8 +131,9 @@ public:
...
@@ -131,8 +131,9 @@ public:
fwdPD_
.
reset
(
new
eltwise_fwd
::
primitive_desc
(
fwdDesc
,
eng
));
fwdPD_
.
reset
(
new
eltwise_fwd
::
primitive_desc
(
fwdDesc
,
eng
));
// use inplace for forward but save input value before submit
// use inplace for forward but save input value before submit
inVal_
=
val_
;
inVal_
=
val_
;
if
(
act
.
grad
)
{
copyInVal_
=
nullptr
;
// only copy when need do backward
if
(
act
.
grad
&&
algo
==
mkldnn
::
algorithm
::
eltwise_tanh
)
{
// tanh need save src input for backward
inVal_
=
MKLDNNMatrix
::
create
(
nullptr
,
val_
->
getPrimitiveDesc
());
inVal_
=
MKLDNNMatrix
::
create
(
nullptr
,
val_
->
getPrimitiveDesc
());
copyInVal_
=
std
::
make_shared
<
mkldnn
::
reorder
>
(
*
val_
,
*
inVal_
);
copyInVal_
=
std
::
make_shared
<
mkldnn
::
reorder
>
(
*
val_
,
*
inVal_
);
CHECK
(
copyInVal_
)
<<
"should not be emptry"
;
CHECK
(
copyInVal_
)
<<
"should not be emptry"
;
...
...
paddle/gserver/tests/test_MKLDNN.cpp
浏览文件 @
fa722385
...
@@ -26,17 +26,26 @@ DECLARE_bool(thread_local_rand_use_global_seed);
...
@@ -26,17 +26,26 @@ DECLARE_bool(thread_local_rand_use_global_seed);
DECLARE_bool
(
use_gpu
);
DECLARE_bool
(
use_gpu
);
DECLARE_bool
(
use_mkldnn
);
DECLARE_bool
(
use_mkldnn
);
struct
testFCDesc
{
#define RUN_MKLDNN_TEST(DNN_CONFIG, REF_CONFIG, DESC) \
MKLDNNTester tester; \
for (auto bs : {DESC.bs, 1}) { \
tester.run(DNN_CONFIG, REF_CONFIG, bs, DESC.ih, DESC.iw); \
}
#define RUN_MKLDNN_TEST_LAYER(DNN_CONFIG, REF_TYPE, DESC) \
TestConfig ref = DNN_CONFIG; \
ref.layerConfig.set_type(REF_TYPE); \
RUN_MKLDNN_TEST(DNN_CONFIG, ref, DESC)
struct
testFcDesc
{
int
bs
;
int
bs
;
int
ic
;
int
ic
;
int
oc
;
int
oc
;
int
ih
,
iw
;
// oh == ow == 1
int
ih
,
iw
;
// oh == ow == 1
};
};
void
testFcLayer
(
const
testFCDesc
&
pm
)
{
static
void
getMKLDNNFcConfig
(
TestConfig
&
cfg
,
const
testFcDesc
&
pm
)
{
const
std
::
string
compareTypes
[]
=
{
"mkldnn_fc"
,
"fc"
};
cfg
.
layerConfig
.
set_type
(
"mkldnn_fc"
);
TestConfig
cfg
;
cfg
.
layerConfig
.
set_type
(
compareTypes
[
0
]);
cfg
.
layerConfig
.
set_size
(
pm
.
oc
);
cfg
.
layerConfig
.
set_size
(
pm
.
oc
);
cfg
.
inputDefs
.
push_back
(
cfg
.
inputDefs
.
push_back
(
{
INPUT_DATA
,
{
INPUT_DATA
,
...
@@ -44,25 +53,25 @@ void testFcLayer(const testFCDesc& pm) {
...
@@ -44,25 +53,25 @@ void testFcLayer(const testFCDesc& pm) {
/* size of input layer= */
size_t
(
pm
.
ic
*
pm
.
ih
*
pm
.
iw
),
/* size of input layer= */
size_t
(
pm
.
ic
*
pm
.
ih
*
pm
.
iw
),
/* size of weight= */
size_t
(
pm
.
oc
*
pm
.
ic
*
pm
.
ih
*
pm
.
iw
)});
/* size of weight= */
size_t
(
pm
.
oc
*
pm
.
ic
*
pm
.
ih
*
pm
.
iw
)});
cfg
.
layerConfig
.
add_inputs
();
cfg
.
layerConfig
.
add_inputs
();
}
MKLDNNTester
tester
;
void
testFcLayer
(
const
testFcDesc
&
pm
)
{
TestConfig
dnnConfig
;
getMKLDNNFcConfig
(
dnnConfig
,
pm
);
for
(
auto
biasSize
:
{
pm
.
oc
,
0
})
{
for
(
auto
biasSize
:
{
pm
.
oc
,
0
})
{
cfg
.
biasSize
=
biasSize
;
dnnConfig
.
biasSize
=
biasSize
;
TestConfig
ref
=
cfg
;
RUN_MKLDNN_TEST_LAYER
(
dnnConfig
,
"fc"
,
pm
)
ref
.
layerConfig
.
set_type
(
compareTypes
[
1
]);
for
(
auto
bs
:
{
pm
.
bs
,
1
})
{
tester
.
run
(
cfg
,
ref
,
bs
,
pm
.
ih
,
pm
.
iw
);
}
}
}
}
}
TEST
(
MKLDNNLayer
,
FcLayer
)
{
TEST
(
MKLDNNLayer
,
FcLayer
)
{
testFcLayer
({
/*bs*/
2
,
/*ic*/
2
,
/*oc*/
3
,
/*ih*/
1
,
/*iw*/
1
});
/* bs, ic, ih, iw, oc */
testFcLayer
({
/*bs*/
3
,
/*ic*/
7
,
/*oc*/
19
,
/*ih*/
1
,
/*iw*/
1
});
testFcLayer
({
2
,
2
,
1
,
1
,
3
});
testFcLayer
({
/*bs*/
8
,
/*ic*/
16
,
/*oc*/
32
,
/*ih*/
13
,
/*iw*/
13
});
testFcLayer
({
3
,
7
,
1
,
1
,
19
});
testFcLayer
({
/*bs*/
4
,
/*ic*/
12
,
/*oc*/
18
,
/*ih*/
13
,
/*iw*/
11
});
testFcLayer
({
8
,
16
,
13
,
13
,
32
});
testFcLayer
({
/*bs*/
2
,
/*ic*/
64
,
/*oc*/
32
,
/*ih*/
16
,
/*iw*/
16
});
testFcLayer
({
4
,
12
,
13
,
13
,
18
});
testFcLayer
({
/*bs*/
15
,
/*ic*/
3
,
/*oc*/
6
,
/*ih*/
16
,
/*iw*/
16
});
testFcLayer
({
2
,
64
,
16
,
16
,
32
});
testFcLayer
({
15
,
3
,
16
,
16
,
6
});
}
}
struct
testConvDesc
{
struct
testConvDesc
{
...
@@ -75,13 +84,10 @@ struct testConvDesc {
...
@@ -75,13 +84,10 @@ struct testConvDesc {
int
dh
,
dw
;
int
dh
,
dw
;
};
};
void
testConvLayer
(
const
testConvDesc
&
pm
)
{
static
void
getMKLDNNConvConfig
(
TestConfig
&
cfg
,
const
testConvDesc
&
pm
)
{
const
std
::
string
compareTypes
[]
=
{
"mkldnn_conv"
,
"exconv"
};
cfg
.
layerConfig
.
set_type
(
"mkldnn_conv"
);
TestConfig
cfg
;
cfg
.
layerConfig
.
set_type
(
compareTypes
[
0
]);
cfg
.
layerConfig
.
set_num_filters
(
pm
.
oc
);
cfg
.
layerConfig
.
set_num_filters
(
pm
.
oc
);
cfg
.
layerConfig
.
set_size
(
pm
.
oc
*
pm
.
oh
*
pm
.
ow
);
cfg
.
layerConfig
.
set_size
(
pm
.
oc
*
pm
.
oh
*
pm
.
ow
);
// cfg.layerConfig.set_partial_sum(1); // TODO: check it
cfg
.
layerConfig
.
set_shared_biases
(
true
);
cfg
.
layerConfig
.
set_shared_biases
(
true
);
cfg
.
inputDefs
.
push_back
(
cfg
.
inputDefs
.
push_back
(
{
INPUT_DATA
,
{
INPUT_DATA
,
...
@@ -115,15 +121,14 @@ void testConvLayer(const testConvDesc& pm) {
...
@@ -115,15 +121,14 @@ void testConvLayer(const testConvDesc& pm) {
int
oh
=
outputSize
(
pm
.
ih
,
fh
,
pm
.
ph
,
pm
.
sh
,
true
);
int
oh
=
outputSize
(
pm
.
ih
,
fh
,
pm
.
ph
,
pm
.
sh
,
true
);
CHECK_EQ
(
ow
,
pm
.
ow
)
<<
"output size check failed"
;
CHECK_EQ
(
ow
,
pm
.
ow
)
<<
"output size check failed"
;
CHECK_EQ
(
oh
,
pm
.
oh
)
<<
"output size check failed"
;
CHECK_EQ
(
oh
,
pm
.
oh
)
<<
"output size check failed"
;
}
MKLDNNTester
tester
;
void
testConvLayer
(
const
testConvDesc
&
pm
)
{
TestConfig
dnnConfig
;
getMKLDNNConvConfig
(
dnnConfig
,
pm
);
for
(
auto
biasSize
:
{
pm
.
oc
,
0
})
{
for
(
auto
biasSize
:
{
pm
.
oc
,
0
})
{
cfg
.
biasSize
=
biasSize
;
dnnConfig
.
biasSize
=
biasSize
;
TestConfig
ref
=
cfg
;
RUN_MKLDNN_TEST_LAYER
(
dnnConfig
,
"exconv"
,
pm
)
ref
.
layerConfig
.
set_type
(
compareTypes
[
1
]);
for
(
auto
bs
:
{
pm
.
bs
,
1
})
{
tester
.
run
(
cfg
,
ref
,
bs
,
pm
.
ih
,
pm
.
iw
);
}
}
}
}
}
...
@@ -143,7 +148,7 @@ TEST(MKLDNNLayer, ConvLayer) {
...
@@ -143,7 +148,7 @@ TEST(MKLDNNLayer, ConvLayer) {
}
}
struct
testPoolDesc
{
struct
testPoolDesc
{
int
bs
,
ch
;
// input channel and output channel are the same
int
bs
,
ic
;
// input channel and output channel are the same
int
ih
,
iw
;
int
ih
,
iw
;
int
oh
,
ow
;
int
oh
,
ow
;
int
fh
,
fw
;
int
fh
,
fw
;
...
@@ -151,19 +156,18 @@ struct testPoolDesc {
...
@@ -151,19 +156,18 @@ struct testPoolDesc {
int
sh
,
sw
;
int
sh
,
sw
;
};
};
void
testPoolLayer
(
const
testPoolDesc
&
pm
)
{
static
void
getMKLDNNPoolConfig
(
TestConfig
&
cfg
,
const
testPoolDesc
&
pm
)
{
const
std
::
string
compareTypes
[]
=
{
"mkldnn_pool"
,
"pool"
};
cfg
.
layerConfig
.
set_type
(
"mkldnn_pool"
);
TestConfig
cfg
;
cfg
.
layerConfig
.
set_size
(
pm
.
ic
*
pm
.
oh
*
pm
.
ow
);
cfg
.
layerConfig
.
set_type
(
compareTypes
[
0
]);
cfg
.
layerConfig
.
set_size
(
pm
.
ch
*
pm
.
oh
*
pm
.
ow
);
cfg
.
inputDefs
.
push_back
(
cfg
.
inputDefs
.
push_back
(
{
INPUT_DATA
,
{
INPUT_DATA
,
"layer_0"
,
"layer_0"
,
/* size of input layer= */
size_t
(
pm
.
ch
*
pm
.
ih
*
pm
.
iw
),
/* size of input layer= */
size_t
(
pm
.
ic
*
pm
.
ih
*
pm
.
iw
),
0
});
0
});
LayerInputConfig
*
input
=
cfg
.
layerConfig
.
add_inputs
();
LayerInputConfig
*
input
=
cfg
.
layerConfig
.
add_inputs
();
PoolConfig
*
pool
=
input
->
mutable_pool_conf
();
PoolConfig
*
pool
=
input
->
mutable_pool_conf
();
pool
->
set_channels
(
pm
.
ch
);
pool
->
set_pool_type
(
"avg-projection"
);
pool
->
set_channels
(
pm
.
ic
);
pool
->
set_img_size
(
pm
.
iw
);
pool
->
set_img_size
(
pm
.
iw
);
pool
->
set_img_size_y
(
pm
.
ih
);
pool
->
set_img_size_y
(
pm
.
ih
);
pool
->
set_output_x
(
pm
.
ow
);
pool
->
set_output_x
(
pm
.
ow
);
...
@@ -179,20 +183,21 @@ void testPoolLayer(const testPoolDesc& pm) {
...
@@ -179,20 +183,21 @@ void testPoolLayer(const testPoolDesc& pm) {
int
ow
=
outputSize
(
pm
.
iw
,
pm
.
fw
,
pm
.
pw
,
pm
.
sw
,
false
);
int
ow
=
outputSize
(
pm
.
iw
,
pm
.
fw
,
pm
.
pw
,
pm
.
sw
,
false
);
CHECK_EQ
(
ow
,
pm
.
ow
)
<<
"output size check failed"
;
CHECK_EQ
(
ow
,
pm
.
ow
)
<<
"output size check failed"
;
CHECK_EQ
(
oh
,
pm
.
oh
)
<<
"output size check failed"
;
CHECK_EQ
(
oh
,
pm
.
oh
)
<<
"output size check failed"
;
}
MKLDNNTester
tester
;
void
testPoolLayer
(
const
testPoolDesc
&
pm
)
{
TestConfig
dnnConfig
;
getMKLDNNPoolConfig
(
dnnConfig
,
pm
);
LayerInputConfig
*
input
=
dnnConfig
.
layerConfig
.
mutable_inputs
(
0
);
PoolConfig
*
pool
=
input
->
mutable_pool_conf
();
for
(
auto
type
:
{
"max-projection"
,
"avg-projection"
})
{
for
(
auto
type
:
{
"max-projection"
,
"avg-projection"
})
{
pool
->
set_pool_type
(
type
);
pool
->
set_pool_type
(
type
);
TestConfig
ref
=
cfg
;
RUN_MKLDNN_TEST_LAYER
(
dnnConfig
,
"pool"
,
pm
)
ref
.
layerConfig
.
set_type
(
compareTypes
[
1
]);
for
(
auto
bs
:
{
pm
.
bs
,
1
})
{
tester
.
run
(
cfg
,
ref
,
bs
,
pm
.
ih
,
pm
.
iw
);
}
}
}
}
}
TEST
(
MKLDNNLayer
,
PoolLayer
)
{
TEST
(
MKLDNNLayer
,
PoolLayer
)
{
/* bs, ch, ih, iw, oh, ow, fh, fw, ph, pw, sh, sw*/
/* bs, ch, ih, iw, oh, ow, fh, fw, ph, pw, sh, sw
*/
testPoolLayer
({
2
,
1
,
4
,
4
,
2
,
2
,
3
,
3
,
0
,
0
,
2
,
2
});
testPoolLayer
({
2
,
1
,
4
,
4
,
2
,
2
,
3
,
3
,
0
,
0
,
2
,
2
});
testPoolLayer
({
10
,
8
,
16
,
16
,
8
,
8
,
2
,
2
,
0
,
0
,
2
,
2
});
testPoolLayer
({
10
,
8
,
16
,
16
,
8
,
8
,
2
,
2
,
0
,
0
,
2
,
2
});
testPoolLayer
({
4
,
2
,
5
,
5
,
3
,
3
,
3
,
3
,
1
,
1
,
2
,
2
});
testPoolLayer
({
4
,
2
,
5
,
5
,
3
,
3
,
3
,
3
,
1
,
1
,
2
,
2
});
...
@@ -204,44 +209,36 @@ TEST(MKLDNNLayer, PoolLayer) {
...
@@ -204,44 +209,36 @@ TEST(MKLDNNLayer, PoolLayer) {
}
}
struct
testActDesc
{
struct
testActDesc
{
int
bs
,
ch
;
int
bs
,
ic
,
ih
,
iw
;
int
ih
,
iw
;
};
};
static
void
getAddtoConfig
(
TestConfig
&
cfg
,
const
testActDesc
&
pm
)
{
static
void
getAddtoConfig
(
TestConfig
&
cfg
,
const
testActDesc
&
pm
)
{
cfg
.
biasSize
=
0
;
cfg
.
biasSize
=
0
;
cfg
.
layerConfig
.
set_type
(
"addto"
);
cfg
.
layerConfig
.
set_type
(
"addto"
);
cfg
.
layerConfig
.
set_size
(
pm
.
ch
*
pm
.
ih
*
pm
.
iw
);
size_t
layerSize
=
pm
.
ih
*
pm
.
ih
*
pm
.
iw
;
cfg
.
inputDefs
.
push_back
(
cfg
.
layerConfig
.
set_size
(
layerSize
);
{
INPUT_DATA
,
cfg
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
layerSize
,
0
});
"layer_0"
,
/* size of input layer= */
size_t
(
pm
.
ch
*
pm
.
ih
*
pm
.
iw
),
0
});
cfg
.
layerConfig
.
add_inputs
();
cfg
.
layerConfig
.
add_inputs
();
}
}
void
testActivation
(
std
::
string
&
type
,
const
testActDesc
&
pm
)
{
void
testActivation
(
std
::
string
&
actType
,
const
testActDesc
&
pm
)
{
const
std
::
string
compareTypes
[]
=
{
type
,
type
.
erase
(
0
,
7
)};
// TODO(TJ): mkldnn_softmax not implemented, paddle do not have elu activation
if
(
actType
==
"mkldnn_softmax"
||
actType
==
"mkldnn_elu"
)
{
return
;
}
const
std
::
string
compareTypes
[]
=
{
actType
,
actType
.
erase
(
0
,
7
)};
TestConfig
cfg
;
TestConfig
cfg
;
getAddtoConfig
(
cfg
,
pm
);
getAddtoConfig
(
cfg
,
pm
);
TestConfig
ref
=
cfg
;
TestConfig
ref
=
cfg
;
cfg
.
layerConfig
.
set_active_type
(
compareTypes
[
0
]);
cfg
.
layerConfig
.
set_active_type
(
compareTypes
[
0
]);
ref
.
layerConfig
.
set_active_type
(
compareTypes
[
1
]);
ref
.
layerConfig
.
set_active_type
(
compareTypes
[
1
]);
MKLDNNTester
tester
;
RUN_MKLDNN_TEST
(
cfg
,
ref
,
pm
)
for
(
auto
bs
:
{
pm
.
bs
,
1
})
{
tester
.
run
(
cfg
,
ref
,
bs
,
pm
.
ih
,
pm
.
iw
);
}
}
}
TEST
(
MKLDNNActivation
,
Activations
)
{
TEST
(
MKLDNNActivation
,
Activations
)
{
auto
types
=
MKLDNNActivation
::
getAllRegisteredTypes
();
auto
types
=
MKLDNNActivation
::
getAllRegisteredTypes
();
// TODO(TJ): mkldnn_softmax not implemented, paddle do not have elu activation
std
::
set
<
string
>
excluded
{
"mkldnn_softmax"
,
"mkldnn_elu"
};
for
(
auto
type
:
types
)
{
for
(
auto
type
:
types
)
{
if
(
excluded
.
count
(
type
))
{
/* bs, c, h, w*/
continue
;
}
testActivation
(
type
,
{
16
,
64
,
32
,
32
});
testActivation
(
type
,
{
16
,
64
,
32
,
32
});
}
}
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录