未验证 提交 fa522dff 编写于 作者: J juncaipeng 提交者: GitHub

Fix bug in add_quant_dequant_pass, test=develop (#21018)

* Fix bug for inserting add_quant_dequant_op to same variable repetitively in add_quant_dequant_pass, test=develop
上级 c98712d5
...@@ -1244,10 +1244,13 @@ class AddQuantDequantPass(object): ...@@ -1244,10 +1244,13 @@ class AddQuantDequantPass(object):
for input_name in input_names: for input_name in input_names:
in_node = graph._find_node_by_name(op_node.inputs, in_node = graph._find_node_by_name(op_node.inputs,
input_name) input_name)
quant_var_node, scale_var_node = \ if input_name in dequantized_vars_map:
self._inser_quant_dequant_moving_average_abs_max_op( quant_var_node = dequantized_vars_map[input_name]
graph, in_node, self._quant_bits) else:
dequantized_vars_map[input_name] = quant_var_node quant_var_node, scale_var_node = \
self._inser_quant_dequant_moving_average_abs_max_op(
graph, in_node, self._quant_bits)
dequantized_vars_map[input_name] = quant_var_node
graph.update_input_link(in_node, quant_var_node, op_node) graph.update_input_link(in_node, quant_var_node, op_node)
for op_node in ops: for op_node in ops:
......
...@@ -505,6 +505,52 @@ class TestQuantizationFreezePass(unittest.TestCase): ...@@ -505,6 +505,52 @@ class TestQuantizationFreezePass(unittest.TestCase):
for_ci=True) for_ci=True)
def quant_dequant_residual_block(num, quant_skip_pattern=None):
def conv_bn_layer(input,
ch_out,
filter_size,
stride,
padding,
act='relu',
bias_attr=False):
tmp = fluid.layers.conv2d(
input=input,
filter_size=filter_size,
num_filters=ch_out,
stride=stride,
padding=padding,
act=None,
bias_attr=bias_attr)
return fluid.layers.batch_norm(input=tmp, act=act)
data = fluid.layers.data(name='image', shape=[1, 32, 32], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
hidden = data
for _ in six.moves.xrange(num):
conv = conv_bn_layer(hidden, 16, 3, 1, 1, act=None, bias_attr=True)
short = conv_bn_layer(hidden, 16, 1, 1, 0, act=None)
hidden = fluid.layers.elementwise_add(x=conv, y=short, act='relu')
if quant_skip_pattern:
with fluid.name_scope(quant_skip_pattern):
pool1 = fluid.layers.pool2d(
input=hidden, pool_size=2, pool_type='avg', pool_stride=2)
pool2 = fluid.layers.pool2d(
input=hidden, pool_size=2, pool_type='max', pool_stride=2)
pool_add = fluid.layers.elementwise_add(
x=pool1, y=pool2, act='relu')
else:
pool1 = fluid.layers.pool2d(
input=hidden, pool_size=2, pool_type='avg', pool_stride=2)
pool2 = fluid.layers.pool2d(
input=hidden, pool_size=2, pool_type='max', pool_stride=2)
pool_add = fluid.layers.elementwise_add(x=pool1, y=pool2, act='relu')
fc = fluid.layers.fc(input=pool_add, size=10)
loss = fluid.layers.cross_entropy(input=fc, label=label)
loss = fluid.layers.mean(loss)
return loss
class TestAddQuantDequantPass(unittest.TestCase): class TestAddQuantDequantPass(unittest.TestCase):
def setUp(self): def setUp(self):
self._target_ops = {'elementwise_add', 'pool2d'} self._target_ops = {'elementwise_add', 'pool2d'}
...@@ -535,7 +581,7 @@ class TestAddQuantDequantPass(unittest.TestCase): ...@@ -535,7 +581,7 @@ class TestAddQuantDequantPass(unittest.TestCase):
main = fluid.Program() main = fluid.Program()
startup = fluid.Program() startup = fluid.Program()
with fluid.program_guard(main, startup): with fluid.program_guard(main, startup):
loss = residual_block(2, skip_pattern) loss = quant_dequant_residual_block(2, skip_pattern)
opt = fluid.optimizer.Adam(learning_rate=0.001) opt = fluid.optimizer.Adam(learning_rate=0.001)
opt.minimize(loss) opt.minimize(loss)
place = fluid.CPUPlace() place = fluid.CPUPlace()
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册