Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
f9311406
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f9311406
编写于
8月 22, 2017
作者:
Q
qingqing01
提交者:
GitHub
8月 22, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #3501 from qingqing01/cross_entropy
Implement GPU kernel for cross entropy operator.
上级
ce723af0
a8863a8d
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
140 addition
and
23 deletion
+140
-23
paddle/framework/pybind.cc
paddle/framework/pybind.cc
+1
-1
paddle/operators/cross_entropy_op.cc
paddle/operators/cross_entropy_op.cc
+6
-9
paddle/operators/cross_entropy_op.cu
paddle/operators/cross_entropy_op.cu
+117
-5
paddle/operators/cross_entropy_op.h
paddle/operators/cross_entropy_op.h
+11
-3
python/paddle/v2/framework/tests/op_test_util.py
python/paddle/v2/framework/tests/op_test_util.py
+2
-1
python/paddle/v2/framework/tests/test_cross_entropy_op.py
python/paddle/v2/framework/tests/test_cross_entropy_op.py
+3
-4
未找到文件。
paddle/framework/pybind.cc
浏览文件 @
f9311406
...
...
@@ -31,7 +31,7 @@ limitations under the License. */
namespace
py
=
pybind11
;
USE_OP
(
add_two
);
USE_
CPU_ONLY_
OP
(
onehot_cross_entropy
);
USE_OP
(
onehot_cross_entropy
);
USE_OP
(
sgd
);
USE_OP
(
mul
);
USE_OP
(
mean
);
...
...
paddle/operators/cross_entropy_op.cc
浏览文件 @
f9311406
...
...
@@ -39,11 +39,10 @@ class OnehotCrossEntropyGradientOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
auto
X_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
dX
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
X
=
ctx
.
Input
<
Tensor
>
(
"X"
);
// TODO(superjom) add enforce here after helper functions ready
X_grad
->
Resize
(
X
->
dims
());
dX
->
Resize
(
X
->
dims
());
}
};
...
...
@@ -70,9 +69,7 @@ namespace ops = paddle::operators;
REGISTER_OP
(
onehot_cross_entropy
,
ops
::
OnehotCrossEntropyOp
,
ops
::
OnehotCrossEntropyOpMaker
,
onehot_cross_entropy_grad
,
ops
::
OnehotCrossEntropyGradientOp
);
REGISTER_OP_CPU_KERNEL
(
onehot_cross_entropy
,
ops
::
OnehotCrossEntropyOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
onehot_cross_entropy_grad
,
ops
::
OnehotCrossEntropyGradientOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
onehot_cross_entropy
,
ops
::
OnehotCrossEntropyOpKernel
<
float
>
);
REGISTER_OP_CPU_KERNEL
(
onehot_cross_entropy_grad
,
ops
::
OnehotCrossEntropyGradientOpKernel
<
float
>
);
paddle/operators/cross_entropy_op.cu
浏览文件 @
f9311406
...
...
@@ -12,10 +12,122 @@
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/cross_entropy_op.h"
#include "paddle/framework/op_registry.h"
#include "paddle/platform/assert.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
__host__
__device__
T
clipping_log
(
const
T
x
)
{
PADDLE_ASSERT
(
std
::
is_floating_point
<
T
>::
value
);
const
T
kApproInf
=
1e20
;
T
v
=
log
(
x
);
if
(
v
==
INFINITY
)
{
return
kApproInf
;
}
if
(
v
==
-
INFINITY
)
{
return
-
kApproInf
;
}
return
v
;
}
template
<
typename
T
>
__global__
void
CrossEntropyKernel
(
T
*
Y
,
const
T
*
X
,
const
int
*
label
,
const
int
N
,
const
int
D
)
{
// TOOD(qingqing) define CUDA_1D_KERNEL_LOOP macro in a common file.
// CUDA_1D_KERNEL_LOOP(i, N) {
for
(
int
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
i
<
N
;
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
PADDLE_ASSERT
(
label
[
i
]
>=
0
&&
label
[
i
]
<
D
);
Y
[
i
]
=
-
clipping_log
(
X
[
i
*
D
+
label
[
i
]]);
}
}
// TODO(qingqing): make zero setting an common function.
template
<
typename
T
>
__global__
void
zero
(
T
*
X
,
const
int
N
)
{
for
(
int
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
i
<
N
;
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
X
[
i
]
=
0.0
;
}
}
template
<
typename
T
>
__global__
void
CrossEntropyGradientKernel
(
T
*
dX
,
const
T
*
dY
,
const
T
*
X
,
const
int
*
label
,
const
int
N
,
const
int
D
)
{
// TOOD(qingqing) define CUDA_1D_KERNEL_LOOP macro in a common file.
// CUDA_1D_KERNEL_LOOP(i, N) {
for
(
int
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
i
<
N
;
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
idx
=
i
*
D
+
label
[
i
];
dX
[
idx
]
=
-
dY
[
i
]
/
X
[
idx
];
}
}
template
<
typename
T
>
class
OnehotCrossEntropyOpCUDAKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()),
"It must use GPUPlace."
);
auto
X
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
T
*
Xdata
=
X
->
data
<
T
>
();
const
int
*
label_data
=
ctx
.
Input
<
Tensor
>
(
"label"
)
->
data
<
int
>
();
auto
Y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
Y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
Ydata
=
Y
->
data
<
T
>
();
int
N
=
X
->
dims
()[
0
];
int
D
=
X
->
dims
()[
1
];
int
block
=
512
;
int
grid
=
(
N
+
block
-
1
)
/
block
;
// TODO(qingqing) launch kernel on specified stream
// base on ExecutionContext.
CrossEntropyKernel
<
T
><<<
grid
,
block
>>>
(
Ydata
,
Xdata
,
label_data
,
N
,
D
);
}
};
template
<
typename
T
>
class
OnehotCrossEntropyGradientOpCUDAKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()),
"It must use GPUPlace."
);
auto
X
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
dX
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
dY
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
label
=
ctx
.
Input
<
Tensor
>
(
"label"
);
auto
*
dXdata
=
dX
->
template
mutable_data
<
T
>(
ctx
.
GetPlace
());
auto
*
dYdata
=
dY
->
template
data
<
T
>();
auto
*
Xdata
=
X
->
template
data
<
T
>();
auto
*
label_data
=
label
->
data
<
int
>
();
int
N
=
X
->
dims
()[
0
];
int
D
=
X
->
dims
()[
1
];
int
block
=
512
;
int
grid
=
(
N
*
D
+
block
-
1
)
/
block
;
zero
<
T
><<<
grid
,
block
>>>
(
dXdata
,
N
*
D
);
grid
=
(
N
+
block
-
1
)
/
block
;
// TODO(qingqing): launch kernel on specified stream
// base on ExecutionContext.
CrossEntropyGradientKernel
<
T
><<<
grid
,
block
>>>
(
dXdata
,
dYdata
,
Xdata
,
label_data
,
N
,
D
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
onehot_cross_entropy
,
ops
::
OnehotCrossEntropyOpKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
onehot_cross_entropy
,
ops
::
OnehotCrossEntropyOpCUDAKernel
<
float
>
);
REGISTER_OP_GPU_KERNEL
(
onehot_cross_entropy_grad
,
ops
::
OnehotCrossEntropyGradientOpCUDAKernel
<
float
>
);
paddle/operators/cross_entropy_op.h
浏览文件 @
f9311406
...
...
@@ -21,7 +21,7 @@ namespace operators {
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
T
tolerable_value
(
T
x
)
{
inline
T
tolerable_value
(
const
T
x
)
{
static_assert
(
std
::
is_floating_point
<
T
>::
value
,
"tolerable_value works only on float, "
"double and double double."
);
...
...
@@ -39,10 +39,13 @@ T tolerable_value(T x) {
return
x
;
}
template
<
typename
Place
,
typename
T
>
template
<
typename
T
>
class
OnehotCrossEntropyOpKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
"It must use CPUPlace."
);
auto
X
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
T
*
Xdata
=
X
->
data
<
T
>
();
const
int
*
label_data
=
ctx
.
Input
<
Tensor
>
(
"label"
)
->
data
<
int
>
();
...
...
@@ -62,10 +65,13 @@ class OnehotCrossEntropyOpKernel : public framework::OpKernel {
}
};
template
<
typename
Place
,
typename
T
>
template
<
typename
T
>
class
OnehotCrossEntropyGradientOpKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
"It must use CPUPlace."
);
auto
X
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
dX
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
dY
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
...
...
@@ -79,6 +85,8 @@ class OnehotCrossEntropyGradientOpKernel : public framework::OpKernel {
const
int
batch_size
=
X
->
dims
()[
0
];
const
int
class_num
=
X
->
dims
()[
1
];
// TODO(qingqing): make zero setting an common function.
memset
(
dXdata
,
0
,
sizeof
(
T
)
*
batch_size
*
class_num
);
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
int
index
=
i
*
class_num
+
label_data
[
i
];
dXdata
[
index
]
=
-
tolerable_value
(
dYdata
[
i
]
/
Xdata
[
index
]);
...
...
python/paddle/v2/framework/tests/op_test_util.py
浏览文件 @
f9311406
...
...
@@ -64,7 +64,8 @@ class OpTestMeta(type):
actual
=
numpy
.
array
(
scope
.
find_var
(
out_name
).
get_tensor
())
expect
=
self
.
outputs
[
out_name
]
self
.
assertTrue
(
numpy
.
allclose
(
actual
,
expect
),
numpy
.
allclose
(
actual
,
expect
,
atol
=
1e-05
),
"output name: "
+
out_name
+
"has diff"
)
obj
.
test_all
=
test_all
...
...
python/paddle/v2/framework/tests/test_cross_entropy_op.py
浏览文件 @
f9311406
...
...
@@ -8,9 +8,8 @@ class TestCrossEntropy(unittest.TestCase):
__metaclass__
=
OpTestMeta
def
setUp
(
self
):
# TODO this unit test is not passed
self
.
type
=
"onehot_cross_entropy"
batch_size
=
10
0
batch_size
=
3
0
class_num
=
10
X
=
numpy
.
random
.
random
((
batch_size
,
class_num
)).
astype
(
"float32"
)
label
=
5
*
numpy
.
ones
(
batch_size
).
astype
(
"int32"
)
...
...
@@ -22,9 +21,9 @@ class TestCrossEntropy(unittest.TestCase):
class
CrossEntropyGradOpTest
(
GradientChecker
):
def
test_
softmax
_grad
(
self
):
def
test_
check
_grad
(
self
):
op
=
create_op
(
"onehot_cross_entropy"
)
batch_size
=
10
0
batch_size
=
3
0
class_num
=
10
inputs
=
{
"X"
:
numpy
.
random
.
uniform
(
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录