Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
f8c279b1
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
f8c279b1
编写于
3月 27, 2019
作者:
X
Xin Pan
提交者:
GitHub
3月 27, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #16454 from panyx0718/imperative2
polish deepCF model to support real dataset
上级
fa1796a3
fd24ab47
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
137 addition
and
57 deletion
+137
-57
paddle/fluid/operators/gather.cu.h
paddle/fluid/operators/gather.cu.h
+1
-0
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+1
-0
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+5
-2
python/paddle/fluid/imperative/base.py
python/paddle/fluid/imperative/base.py
+2
-1
python/paddle/fluid/imperative/tracer.py
python/paddle/fluid/imperative/tracer.py
+1
-1
python/paddle/fluid/initializer.py
python/paddle/fluid/initializer.py
+2
-2
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+2
-0
python/paddle/fluid/tests/unittests/test_imperative_deepcf.py
...on/paddle/fluid/tests/unittests/test_imperative_deepcf.py
+123
-51
未找到文件。
paddle/fluid/operators/gather.cu.h
浏览文件 @
f8c279b1
...
...
@@ -64,6 +64,7 @@ void GPUGather(const platform::DeviceContext& ctx, const Tensor& src,
for
(
int
i
=
1
;
i
<
src_dims
.
size
();
++
i
)
slice_size
*=
src_dims
[
i
];
const
T
*
p_src
=
src
.
data
<
T
>
();
// why must be int?
const
int
*
p_index
=
index
.
data
<
int
>
();
T
*
p_output
=
output
->
data
<
T
>
();
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
f8c279b1
...
...
@@ -235,6 +235,7 @@ PYBIND11_MODULE(core, m) {
self
.
forward_id_
=
forward_id
;
},
py
::
return_value_policy
::
reference
)
.
def_property_readonly
(
"type"
,
&
imperative
::
OpBase
::
Type
)
.
def_property
(
"backward_id"
,
[](
const
imperative
::
OpBase
&
self
)
{
return
self
.
backward_id_
;
},
...
...
python/paddle/fluid/framework.py
浏览文件 @
f8c279b1
...
...
@@ -744,7 +744,7 @@ class Operator(object):
if
_in_imperative_mode
():
if
type
is
None
:
raise
ValueError
(
"`type` to initilized an Operator can not be None."
)
"`type` to initi
a
lized an Operator can not be None."
)
self
.
iop
=
core
.
OpBase
(
type
)
# TODO(minqiyang): remove these lines after we take apart all
...
...
@@ -906,7 +906,10 @@ class Operator(object):
@
property
def
type
(
self
):
return
self
.
desc
.
type
()
if
_in_imperative_mode
():
return
self
.
iop
.
type
else
:
return
self
.
desc
.
type
()
def
input
(
self
,
name
):
"""
...
...
python/paddle/fluid/imperative/base.py
浏览文件 @
f8c279b1
...
...
@@ -55,7 +55,8 @@ def to_variable(value, block=None, name=None):
type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
name
=
name
,
shape
=
value
.
shape
,
dtype
=
value
.
dtype
)
dtype
=
value
.
dtype
,
stop_gradient
=
True
)
var
=
py_var
.
_ivar
.
value
()
tensor
=
var
.
get_tensor
()
tensor
.
set
(
value
,
framework
.
_current_expected_place
())
...
...
python/paddle/fluid/imperative/tracer.py
浏览文件 @
f8c279b1
...
...
@@ -62,7 +62,7 @@ class Tracer(core.Tracer):
if
len
(
backward_refs
)
>
0
:
op
.
iop
.
register_backward_hooks
(
release_op
)
# TODO(minqiyang): remove all inputs and outputs after sep
e
rate
# TODO(minqiyang): remove all inputs and outputs after sep
a
rate
# var and grad
op
.
backward_refs
=
defaultdict
(
list
)
for
k
,
v
in
six
.
iteritems
(
op
.
inputs
):
...
...
python/paddle/fluid/initializer.py
浏览文件 @
f8c279b1
...
...
@@ -212,7 +212,7 @@ class UniformInitializer(Initializer):
if
self
.
_seed
==
0
:
self
.
_seed
=
block
.
program
.
random_seed
# to be compatible of fp16 initalizers
# to be compatible of fp16 init
i
alizers
if
var
.
dtype
==
VarDesc
.
VarType
.
FP16
:
out_dtype
=
VarDesc
.
VarType
.
FP32
out_var
=
block
.
create_var
(
...
...
@@ -756,7 +756,7 @@ class NumpyArrayInitializer(Initializer):
values
=
[
int
(
v
)
for
v
in
self
.
_value
.
flat
]
else
:
raise
ValueError
(
"Unsupported dtype %s"
,
self
.
_value
.
dtype
)
if
self
.
_value
.
size
>
1024
*
1024
*
5
:
if
self
.
_value
.
size
>
1024
*
1024
*
1024
:
raise
ValueError
(
"The size of input is too big. Please consider "
"saving it to file and 'load_op' to load it"
)
op
=
block
.
_prepend_op
(
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
f8c279b1
...
...
@@ -165,6 +165,8 @@ class Optimizer(object):
name
=
self
.
_name
+
"_"
+
name
if
(
name
in
self
.
_accumulators
and
param
.
name
in
self
.
_accumulators
[
name
]):
if
framework
.
_in_imperative_mode
():
return
self
.
_accumulators
[
name
][
param
.
name
]
raise
Exception
(
"Accumulator {} already exists for parameter {}"
.
format
(
name
,
param
.
name
))
if
shape
==
None
:
...
...
python/paddle/fluid/tests/unittests/test_imperative_deepcf.py
浏览文件 @
f8c279b1
...
...
@@ -15,6 +15,7 @@
import
unittest
import
numpy
as
np
import
random
import
os
import
sys
import
paddle
...
...
@@ -23,16 +24,17 @@ import paddle.fluid.core as core
from
test_imperative_base
import
new_program_scope
from
paddle.fluid.imperative.base
import
to_variable
NUM_USERS
=
100
NUM_ITEMS
=
1000
# Can use Amusic dataset as the DeepCF describes.
DATA_PATH
=
os
.
environ
.
get
(
'DATA_PATH'
,
''
)
BATCH_SIZE
=
32
NUM_BATCHES
=
2
BATCH_SIZE
=
int
(
os
.
environ
.
get
(
'BATCH_SIZE'
,
128
))
NUM_BATCHES
=
int
(
os
.
environ
.
get
(
'NUM_BATCHES'
,
5
))
NUM_EPOCHES
=
int
(
os
.
environ
.
get
(
'NUM_EPOCHES'
,
1
))
class
MLP
(
fluid
.
imperative
.
Layer
):
class
DMF
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
name_scope
):
super
(
MLP
,
self
).
__init__
(
name_scope
)
super
(
DMF
,
self
).
__init__
(
name_scope
)
self
.
_user_latent
=
fluid
.
imperative
.
FC
(
self
.
full_name
(),
256
)
self
.
_item_latent
=
fluid
.
imperative
.
FC
(
self
.
full_name
(),
256
)
...
...
@@ -61,9 +63,9 @@ class MLP(fluid.imperative.Layer):
return
fluid
.
layers
.
elementwise_mul
(
users
,
items
)
class
DMF
(
fluid
.
imperative
.
Layer
):
class
MLP
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
name_scope
):
super
(
DMF
,
self
).
__init__
(
name_scope
)
super
(
MLP
,
self
).
__init__
(
name_scope
)
self
.
_user_latent
=
fluid
.
imperative
.
FC
(
self
.
full_name
(),
256
)
self
.
_item_latent
=
fluid
.
imperative
.
FC
(
self
.
full_name
(),
256
)
self
.
_match_layers
=
[]
...
...
@@ -87,21 +89,30 @@ class DMF(fluid.imperative.Layer):
class
DeepCF
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
name_scope
):
def
__init__
(
self
,
name_scope
,
num_users
,
num_items
,
matrix
):
super
(
DeepCF
,
self
).
__init__
(
name_scope
)
self
.
_user_emb
=
fluid
.
imperative
.
Embedding
(
self
.
full_name
(),
[
NUM_USERS
,
256
])
self
.
_item_emb
=
fluid
.
imperative
.
Embedding
(
self
.
full_name
(),
[
NUM_ITEMS
,
256
])
self
.
_num_users
=
num_users
self
.
_num_items
=
num_items
self
.
_rating_matrix
=
self
.
create_parameter
(
fluid
.
ParamAttr
(
trainable
=
False
),
matrix
.
shape
,
matrix
.
dtype
,
is_bias
=
False
,
default_initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
matrix
))
self
.
_rating_matrix
.
_stop_gradient
=
True
self
.
_mlp
=
MLP
(
self
.
full_name
())
self
.
_dmf
=
DMF
(
self
.
full_name
())
self
.
_match_fc
=
fluid
.
imperative
.
FC
(
self
.
full_name
(),
1
,
act
=
'sigmoid'
)
def
forward
(
self
,
users
,
items
):
users_emb
=
self
.
_user_emb
(
users
)
items_emb
=
self
.
_item_emb
(
items
)
# users_emb = self._user_emb(users)
# items_emb = self._item_emb(items)
users_emb
=
fluid
.
layers
.
gather
(
self
.
_rating_matrix
,
users
)
items_emb
=
fluid
.
layers
.
gather
(
fluid
.
layers
.
transpose
(
self
.
_rating_matrix
,
[
1
,
0
]),
items
)
users_emb
.
stop_gradient
=
True
items_emb
.
stop_gradient
=
True
mlp_predictive
=
self
.
_mlp
(
users_emb
,
items_emb
)
dmf_predictive
=
self
.
_dmf
(
users_emb
,
items_emb
)
...
...
@@ -116,27 +127,79 @@ def get_data():
user_ids
=
[]
item_ids
=
[]
labels
=
[]
NUM_USERS
=
100
NUM_ITEMS
=
1000
matrix
=
np
.
zeros
([
NUM_USERS
,
NUM_ITEMS
],
dtype
=
np
.
float32
)
for
uid
in
range
(
NUM_USERS
):
for
iid
in
range
(
NUM_ITEMS
):
# 10% positive
label
=
float
(
random
.
randint
(
1
,
10
)
==
1
)
label
=
float
(
random
.
randint
(
1
,
6
)
==
1
)
user_ids
.
append
(
uid
)
item_ids
.
append
(
iid
)
labels
.
append
(
label
)
indices
=
np
.
arange
(
NUM_USERS
*
NUM_ITEMS
)
matrix
[
uid
,
iid
]
=
label
indices
=
np
.
arange
(
len
(
user_ids
))
np
.
random
.
shuffle
(
indices
)
users_np
=
np
.
array
(
user_ids
,
dtype
=
np
.
int32
)[
indices
]
items_np
=
np
.
array
(
item_ids
,
dtype
=
np
.
int32
)[
indices
]
labels_np
=
np
.
array
(
labels
,
dtype
=
np
.
float32
)[
indices
]
return
np
.
expand_dims
(
users_np
,
-
1
),
\
np
.
expand_dims
(
items_np
,
-
1
),
\
np
.
expand_dims
(
labels_np
,
-
1
),
NUM_USERS
,
NUM_ITEMS
,
matrix
def
load_data
(
DATA_PATH
):
sys
.
stderr
.
write
(
'loading from %s
\n
'
%
DATA_PATH
)
likes
=
dict
()
num_users
=
-
1
num_items
=
-
1
with
open
(
DATA_PATH
,
'r'
)
as
f
:
for
l
in
f
.
readlines
():
uid
,
iid
,
rating
=
[
int
(
v
)
for
v
in
l
.
split
(
'
\t
'
)]
num_users
=
max
(
num_users
,
uid
+
1
)
num_items
=
max
(
num_items
,
iid
+
1
)
if
float
(
rating
)
>
0.0
:
likes
[(
uid
,
iid
)]
=
1.0
user_ids
=
[]
item_ids
=
[]
labels
=
[]
matrix
=
np
.
zeros
([
num_users
,
num_items
],
dtype
=
np
.
float32
)
for
uid
,
iid
in
likes
.
keys
():
user_ids
.
append
(
uid
)
item_ids
.
append
(
iid
)
labels
.
append
(
1.0
)
matrix
[
uid
,
iid
]
=
1.0
negative
=
0
while
negative
<
3
:
nuid
=
random
.
randint
(
0
,
num_users
-
1
)
niid
=
random
.
randint
(
0
,
num_items
-
1
)
if
(
nuid
,
niid
)
not
in
likes
:
negative
+=
1
user_ids
.
append
(
nuid
)
item_ids
.
append
(
niid
)
labels
.
append
(
0.0
)
indices
=
np
.
arange
(
len
(
user_ids
))
np
.
random
.
shuffle
(
indices
)
users_np
=
np
.
array
(
user_ids
,
dtype
=
np
.
int
64
)[
indices
]
items_np
=
np
.
array
(
item_ids
,
dtype
=
np
.
int
64
)[
indices
]
users_np
=
np
.
array
(
user_ids
,
dtype
=
np
.
int
32
)[
indices
]
items_np
=
np
.
array
(
item_ids
,
dtype
=
np
.
int
32
)[
indices
]
labels_np
=
np
.
array
(
labels
,
dtype
=
np
.
float32
)[
indices
]
return
np
.
expand_dims
(
users_np
,
-
1
),
\
np
.
expand_dims
(
items_np
,
-
1
),
\
np
.
expand_dims
(
labels_np
,
-
1
)
np
.
expand_dims
(
labels_np
,
-
1
)
,
num_users
,
num_items
,
matrix
class
TestImperativeDeepCF
(
unittest
.
TestCase
):
def
test_
gan_float32
(
self
):
def
test_
deefcf
(
self
):
seed
=
90
users_np
,
items_np
,
labels_np
=
get_data
()
if
DATA_PATH
:
(
users_np
,
items_np
,
labels_np
,
num_users
,
num_items
,
matrix
)
=
load_data
(
DATA_PATH
)
else
:
(
users_np
,
items_np
,
labels_np
,
num_users
,
num_items
,
matrix
)
=
get_data
()
startup
=
fluid
.
Program
()
startup
.
random_seed
=
seed
...
...
@@ -145,11 +208,11 @@ class TestImperativeDeepCF(unittest.TestCase):
scope
=
fluid
.
core
.
Scope
()
with
new_program_scope
(
main
=
main
,
startup
=
startup
,
scope
=
scope
):
users
=
fluid
.
layers
.
data
(
'users'
,
[
1
],
dtype
=
'int
64
'
)
items
=
fluid
.
layers
.
data
(
'items'
,
[
1
],
dtype
=
'int
64
'
)
users
=
fluid
.
layers
.
data
(
'users'
,
[
1
],
dtype
=
'int
32
'
)
items
=
fluid
.
layers
.
data
(
'items'
,
[
1
],
dtype
=
'int
32
'
)
labels
=
fluid
.
layers
.
data
(
'labels'
,
[
1
],
dtype
=
'float32'
)
deepcf
=
DeepCF
(
'deepcf'
)
deepcf
=
DeepCF
(
'deepcf'
,
num_users
,
num_items
,
matrix
)
prediction
=
deepcf
(
users
,
items
)
loss
=
fluid
.
layers
.
reduce_sum
(
fluid
.
layers
.
log_loss
(
prediction
,
labels
))
...
...
@@ -159,35 +222,44 @@ class TestImperativeDeepCF(unittest.TestCase):
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
(
)
if
not
core
.
is_compiled_with_cuda
()
else
fluid
.
CUDAPlace
(
0
))
exe
.
run
(
startup
)
for
slice
in
range
(
0
,
BATCH_SIZE
*
NUM_BATCHES
,
BATCH_SIZE
):
static_loss
=
exe
.
run
(
main
,
feed
=
{
users
.
name
:
users_np
[
slice
:
slice
+
BATCH_SIZE
],
items
.
name
:
items_np
[
slice
:
slice
+
BATCH_SIZE
],
labels
.
name
:
labels_np
[
slice
:
slice
+
BATCH_SIZE
]
},
fetch_list
=
[
loss
])[
0
]
sys
.
stderr
.
write
(
'static loss %s
\n
'
%
static_loss
)
for
e
in
range
(
NUM_EPOCHES
):
sys
.
stderr
.
write
(
'epoch %d
\n
'
%
e
)
for
slice
in
range
(
0
,
BATCH_SIZE
*
NUM_BATCHES
,
BATCH_SIZE
):
if
slice
+
BATCH_SIZE
>=
users_np
.
shape
[
0
]:
break
static_loss
=
exe
.
run
(
main
,
feed
=
{
users
.
name
:
users_np
[
slice
:
slice
+
BATCH_SIZE
],
items
.
name
:
items_np
[
slice
:
slice
+
BATCH_SIZE
],
labels
.
name
:
labels_np
[
slice
:
slice
+
BATCH_SIZE
]
},
fetch_list
=
[
loss
])[
0
]
sys
.
stderr
.
write
(
'static loss %s
\n
'
%
static_loss
)
with
fluid
.
imperative
.
guard
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
deepcf
=
DeepCF
(
'deepcf'
)
for
slice
in
range
(
0
,
BATCH_SIZE
*
NUM_BATCHES
,
BATCH_SIZE
):
prediction
=
deepcf
(
to_variable
(
users_np
[
slice
:
slice
+
BATCH_SIZE
]),
to_variable
(
items_np
[
slice
:
slice
+
BATCH_SIZE
]))
loss
=
fluid
.
layers
.
reduce_sum
(
fluid
.
layers
.
log_loss
(
prediction
,
to_variable
(
labels_np
[
slice
:
slice
+
BATCH_SIZE
])))
loss
.
_backward
()
adam
=
fluid
.
optimizer
.
AdamOptimizer
(
0.01
)
adam
.
minimize
(
loss
)
deepcf
.
clear_gradients
()
dy_loss
=
loss
.
_numpy
()
deepcf
=
DeepCF
(
'deepcf'
,
num_users
,
num_items
,
matrix
)
adam
=
fluid
.
optimizer
.
AdamOptimizer
(
0.01
)
for
e
in
range
(
NUM_EPOCHES
):
sys
.
stderr
.
write
(
'epoch %d
\n
'
%
e
)
for
slice
in
range
(
0
,
BATCH_SIZE
*
NUM_BATCHES
,
BATCH_SIZE
):
if
slice
+
BATCH_SIZE
>=
users_np
.
shape
[
0
]:
break
prediction
=
deepcf
(
to_variable
(
users_np
[
slice
:
slice
+
BATCH_SIZE
]),
to_variable
(
items_np
[
slice
:
slice
+
BATCH_SIZE
]))
loss
=
fluid
.
layers
.
reduce_sum
(
fluid
.
layers
.
log_loss
(
prediction
,
to_variable
(
labels_np
[
slice
:
slice
+
BATCH_SIZE
])))
loss
.
_backward
()
adam
.
minimize
(
loss
)
deepcf
.
clear_gradients
()
dy_loss
=
loss
.
_numpy
()
sys
.
stderr
.
write
(
'dynamic loss: %s %s
\n
'
%
(
slice
,
dy_loss
))
self
.
assertEqual
(
static_loss
,
dy_loss
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录