Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
f836c8aa
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2305
Star
20932
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f836c8aa
编写于
3月 28, 2020
作者:
W
Wojciech Uss
提交者:
GitHub
3月 28, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add check for scales and a message (#23119)
上级
8bfd62ff
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
113 addition
and
53 deletion
+113
-53
paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.cc
paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.cc
+55
-50
paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.h
paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.h
+6
-1
paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass_tester.cc
paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass_tester.cc
+39
-1
python/paddle/fluid/contrib/slim/quantization/quantization_mkldnn_pass.py
...uid/contrib/slim/quantization/quantization_mkldnn_pass.py
+13
-1
未找到文件。
paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.cc
浏览文件 @
f836c8aa
...
...
@@ -85,7 +85,7 @@ void CPUQuantizePass::QuantizeInput(Graph* g, Node* op, Node* input,
}
void
CPUQuantizePass
::
QuantizeInputs
(
Graph
*
g
,
Node
*
op
,
std
::
string
input_name
,
VarQuantScale
*
scales
,
bool
are_unsigned
,
bool
are_unsigned
,
std
::
string
scale_attr_name
)
const
{
auto
inputs
=
op
->
inputs
;
auto
output
=
op
->
outputs
[
0
];
...
...
@@ -99,7 +99,7 @@ void CPUQuantizePass::QuantizeInputs(Graph* g, Node* op, std::string input_name,
std
::
vector
<
Node
*>
quantize_out_nodes
(
inputs
.
size
());
std
::
vector
<
std
::
string
>
quantize_out_node_names
(
inputs
.
size
());
double
scale_out
=
(
*
scales
)[
output
->
Name
()].
second
.
data
<
double
>
()[
0
]
;
double
scale_out
=
GetScaleValueForNode
(
output
)
;
unsigned
max
=
are_unsigned
?
U8_MAX
:
S8_MAX
;
float
scale
=
scale_out
*
max
;
...
...
@@ -169,6 +169,27 @@ void CPUQuantizePass::DequantizeOutput(Graph* g, Node* op, Node* output,
if
(
!
scale_attr_name
.
empty
())
op
->
Op
()
->
SetAttr
(
scale_attr_name
,
scale
);
}
std
::
pair
<
bool
,
LoDTensor
>
CPUQuantizePass
::
GetScaleDataForNode
(
const
Node
*
node
)
const
{
auto
&
scales
=
Get
<
VarQuantScale
>
(
"quant_var_scales"
);
PADDLE_ENFORCE_EQ
(
scales
.
count
(
node
->
Name
()),
1
,
platform
::
errors
::
InvalidArgument
(
"Quantization scale for the variable %s is missing."
,
node
->
Name
()));
return
scales
[
node
->
Name
()];
}
LoDTensor
CPUQuantizePass
::
GetScaleTensorForNode
(
const
Node
*
node
)
const
{
return
GetScaleDataForNode
(
node
).
second
;
}
double
CPUQuantizePass
::
GetScaleValueForNode
(
const
Node
*
node
,
bool
*
is_unsigned
)
const
{
auto
scale_data
=
GetScaleDataForNode
(
node
);
if
(
is_unsigned
!=
nullptr
)
*
is_unsigned
=
scale_data
.
first
;
return
scale_data
.
second
.
data
<
double
>
()[
0
];
}
void
CPUQuantizePass
::
QuantizeConv
(
Graph
*
graph
,
bool
with_residual_data
)
const
{
GraphPatternDetector
gpd
;
...
...
@@ -190,15 +211,12 @@ void CPUQuantizePass::QuantizeConv(Graph* graph,
GET_IR_NODE_FROM_SUBGRAPH
(
conv_input
,
conv_input
,
conv_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
conv_output
,
conv_output
,
conv_pattern
);
// get scales calculated after warmup, they scale variables to MAX=1.0
auto
scales
=
Get
<
VarQuantScale
>
(
"quant_var_scales"
);
auto
input_scale
=
scales
[
conv_input
->
Name
()].
second
.
data
<
double
>
()[
0
];
bool
is_input_unsigned
=
scales
[
conv_input
->
Name
()].
first
;
bool
is_input_unsigned
{
false
};
auto
input_scale
=
GetScaleValueForNode
(
conv_input
,
&
is_input_unsigned
);
QuantizeInput
(
g
,
conv_op
,
conv_input
,
"Input"
,
input_scale
,
is_input_unsigned
,
"Scale_in"
);
auto
filter_scale_tensor
=
scales
[
conv_filter
->
Name
()].
second
;
auto
filter_scale_tensor
=
GetScaleTensorForNode
(
conv_filter
)
;
EigenVectorArrayMap
eigen_tensor
{
filter_scale_tensor
.
data
<
double
>
(),
filter_scale_tensor
.
numel
(),
1
};
eigen_tensor
*=
static_cast
<
double
>
(
S8_MAX
);
...
...
@@ -211,16 +229,16 @@ void CPUQuantizePass::QuantizeConv(Graph* graph,
if
(
with_residual_data
)
{
GET_IR_NODE_FROM_SUBGRAPH
(
conv_residual_data
,
conv_residual_data
,
conv_pattern
);
bool
is_residual_unsigned
{
false
};
auto
residual_scale
=
scales
[
conv_residual_data
->
Name
()].
second
.
data
<
double
>
()[
0
];
bool
is_residual_unsigned
=
scales
[
conv_residual_data
->
Name
()].
first
;
GetScaleValueForNode
(
conv_residual_data
,
&
is_residual_unsigned
);
QuantizeInput
(
g
,
conv_op
,
conv_residual_data
,
"ResidualData"
,
residual_scale
,
is_residual_unsigned
,
"Scale_in_eltwise"
);
}
auto
output_scale
=
scales
[
conv_output
->
Name
()].
second
.
data
<
double
>
()[
0
]
;
bool
is_output_unsigned
=
scales
[
conv_output
->
Name
()].
first
;
bool
is_output_unsigned
{
false
}
;
auto
output_scale
=
GetScaleValueForNode
(
conv_output
,
&
is_output_unsigned
)
;
DequantizeOutput
(
g
,
conv_op
,
conv_output
,
"Output"
,
output_scale
,
is_output_unsigned
,
"Scale_out"
);
...
...
@@ -270,15 +288,12 @@ void CPUQuantizePass::QuantizeFc(Graph* graph) const {
GET_IR_NODE_FROM_SUBGRAPH
(
input
,
input
,
fc_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
output
,
output
,
fc_pattern
);
// get scales calculated after warmup, they scale variables to MAX=1.0
auto
scales
=
Get
<
VarQuantScale
>
(
"quant_var_scales"
);
auto
input_scale
=
scales
[
input
->
Name
()].
second
.
data
<
double
>
()[
0
];
bool
is_input_unsigned
=
scales
[
input
->
Name
()].
first
;
bool
is_input_unsigned
{
false
};
auto
input_scale
=
GetScaleValueForNode
(
input
,
&
is_input_unsigned
);
QuantizeInput
(
g
,
fc
,
input
,
"Input"
,
input_scale
,
is_input_unsigned
,
"Scale_in"
);
auto
weight_scale_tensor
=
scales
[
weights
->
Name
()].
second
;
auto
weight_scale_tensor
=
GetScaleTensorForNode
(
weights
)
;
EigenVectorArrayMap
eigen_tensor
{
weight_scale_tensor
.
data
<
double
>
(),
weight_scale_tensor
.
numel
(),
1
};
eigen_tensor
*=
static_cast
<
double
>
(
S8_MAX
);
...
...
@@ -288,8 +303,8 @@ void CPUQuantizePass::QuantizeFc(Graph* graph) const {
fc
->
Op
()
->
SetAttr
(
"Scale_weights"
,
filter_scale
);
auto
output_scale
=
scales
[
output
->
Name
()].
second
.
data
<
double
>
()[
0
]
;
bool
is_output_unsigned
=
scales
[
output
->
Name
()].
first
;
bool
is_output_unsigned
{
false
}
;
auto
output_scale
=
GetScaleValueForNode
(
output
,
&
is_output_unsigned
)
;
DequantizeOutput
(
g
,
fc
,
output
,
"Out"
,
output_scale
,
is_output_unsigned
,
"Scale_out"
);
...
...
@@ -323,15 +338,12 @@ void CPUQuantizePass::QuantizePool(Graph* graph) const {
GET_IR_NODE_FROM_SUBGRAPH
(
pool_input
,
pool_input
,
pool_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
pool_output
,
pool_output
,
pool_pattern
);
// get scales calculated after warmup, they scale variables to MAX=1.0
auto
scales
=
Get
<
VarQuantScale
>
(
"quant_var_scales"
);
auto
input_scale
=
scales
[
pool_input
->
Name
()].
second
.
data
<
double
>
()[
0
];
bool
is_input_unsigned
=
scales
[
pool_input
->
Name
()].
first
;
bool
is_input_unsigned
{
false
};
auto
input_scale
=
GetScaleValueForNode
(
pool_input
,
&
is_input_unsigned
);
QuantizeInput
(
g
,
pool_op
,
pool_input
,
"X"
,
input_scale
,
is_input_unsigned
);
auto
output_scale
=
scales
[
pool_output
->
Name
()].
second
.
data
<
double
>
()[
0
]
;
bool
is_output_unsigned
=
scales
[
pool_output
->
Name
()].
first
;
bool
is_output_unsigned
{
false
}
;
auto
output_scale
=
GetScaleValueForNode
(
pool_output
,
&
is_output_unsigned
)
;
DequantizeOutput
(
g
,
pool_op
,
pool_output
,
"Out"
,
output_scale
,
is_output_unsigned
);
...
...
@@ -362,15 +374,13 @@ void CPUQuantizePass::QuantizeConcat(Graph* graph) const {
GET_IR_NODE_FROM_SUBGRAPH
(
concat_out
,
concat_out
,
concat_pattern
);
// get scales calculated after warmup, they scale variables to MAX=1.0
auto
scales
=
Get
<
VarQuantScale
>
(
"quant_var_scales"
);
// if all inputs were unsigned, then the output was set to unsigned
// during the scale calculation step
bool
are_all_inputs_unsigned
=
scales
[
concat_out
->
Name
()].
first
;
QuantizeInputs
(
g
,
concat_op
,
"X"
,
&
scales
,
are_all_inputs_unsigned
);
bool
are_all_inputs_unsigned
{
false
};
auto
output_scale
=
GetScaleValueForNode
(
concat_out
,
&
are_all_inputs_unsigned
);
auto
output_scale
=
scales
[
concat_out
->
Name
()].
second
.
data
<
double
>
()[
0
]
;
QuantizeInputs
(
g
,
concat_op
,
"X"
,
are_all_inputs_unsigned
)
;
DequantizeOutput
(
g
,
concat_op
,
concat_out
,
"Out"
,
output_scale
,
are_all_inputs_unsigned
);
...
...
@@ -403,11 +413,9 @@ void CPUQuantizePass::QuantizePriorBox(Graph* graph) const {
GET_IR_NODE_FROM_SUBGRAPH
(
prior_box_input
,
prior_box_input
,
prior_box_pattern
);
// get scales calculated after warmup, they scale variables to MAX=1.0
auto
scales
=
Get
<
VarQuantScale
>
(
"quant_var_scales"
);
auto
input_scale
=
scales
[
prior_box_input
->
Name
()].
second
.
data
<
double
>
()[
0
];
bool
is_input_unsigned
=
scales
[
prior_box_input
->
Name
()].
first
;
bool
is_input_unsigned
{
false
};
auto
input_scale
=
GetScaleValueForNode
(
prior_box_input
,
&
is_input_unsigned
);
QuantizeInput
(
g
,
prior_box_op
,
prior_box_input
,
"Input"
,
input_scale
,
is_input_unsigned
);
...
...
@@ -451,15 +459,14 @@ void CPUQuantizePass::QuantizeTranspose(Graph* graph) const {
GET_IR_NODE_FROM_SUBGRAPH
(
transpose_in
,
transpose_in
,
transpose_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
transpose_out
,
transpose_out
,
transpose_pattern
);
// get scales calculated after warmup, they scale variables to MAX=1.0
auto
scales
=
Get
<
VarQuantScale
>
(
"quant_var_scales"
);
auto
input_scale
=
scales
[
transpose_in
->
Name
()].
second
.
data
<
double
>
()[
0
];
bool
is_input_unsigned
=
scales
[
transpose_in
->
Name
()].
first
;
bool
is_input_unsigned
{
false
};
auto
input_scale
=
GetScaleValueForNode
(
transpose_in
,
&
is_input_unsigned
);
QuantizeInput
(
g
,
transpose_op
,
transpose_in
,
"X"
,
input_scale
,
is_input_unsigned
);
auto
output_scale
=
scales
[
transpose_out
->
Name
()].
second
.
data
<
double
>
()[
0
];
bool
is_output_unsigned
=
scales
[
transpose_out
->
Name
()].
first
;
bool
is_output_unsigned
{
false
};
auto
output_scale
=
GetScaleValueForNode
(
transpose_out
,
&
is_output_unsigned
);
DequantizeOutput
(
g
,
transpose_op
,
transpose_out
,
"Out"
,
output_scale
,
is_output_unsigned
);
...
...
@@ -504,15 +511,13 @@ void CPUQuantizePass::QuantizeReshape(Graph* graph) const {
GET_IR_NODE_FROM_SUBGRAPH
(
reshape_in
,
reshape_in
,
reshape_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
reshape_out
,
reshape_out
,
reshape_pattern
);
// get scales calculated after warmup, they scale variables to MAX=1.0
auto
scales
=
Get
<
VarQuantScale
>
(
"quant_var_scales"
);
auto
input_scale
=
scales
[
reshape_in
->
Name
()].
second
.
data
<
double
>
()[
0
];
bool
is_input_unsigned
=
scales
[
reshape_in
->
Name
()].
first
;
bool
is_input_unsigned
{
false
};
auto
input_scale
=
GetScaleValueForNode
(
reshape_in
,
&
is_input_unsigned
);
QuantizeInput
(
g
,
reshape_op
,
reshape_in
,
"X"
,
input_scale
,
is_input_unsigned
);
auto
output_scale
=
scales
[
reshape_out
->
Name
()].
second
.
data
<
double
>
()[
0
]
;
bool
is_output_unsigned
=
scales
[
reshape_out
->
Name
()].
first
;
bool
is_output_unsigned
{
false
}
;
auto
output_scale
=
GetScaleValueForNode
(
reshape_out
,
&
is_output_unsigned
)
;
DequantizeOutput
(
g
,
reshape_op
,
reshape_out
,
"Out"
,
output_scale
,
is_output_unsigned
);
...
...
paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.h
浏览文件 @
f836c8aa
...
...
@@ -64,7 +64,7 @@ class CPUQuantizePass : public FusePassBase {
// quantize all inputs of given name with the same (minimum) scale
void
QuantizeInputs
(
Graph
*
g
,
Node
*
op
,
std
::
string
input_name
,
VarQuantScale
*
scales
,
bool
are_unsigned
,
bool
are_unsigned
,
std
::
string
scale_attr_name
=
""
)
const
;
void
DequantizeOutput
(
Graph
*
g
,
Node
*
op
,
Node
*
output
,
...
...
@@ -72,6 +72,11 @@ class CPUQuantizePass : public FusePassBase {
bool
is_unsigned
,
std
::
string
scale_attr_name
=
""
)
const
;
std
::
pair
<
bool
,
LoDTensor
>
GetScaleDataForNode
(
const
Node
*
node
)
const
;
LoDTensor
GetScaleTensorForNode
(
const
Node
*
node
)
const
;
double
GetScaleValueForNode
(
const
Node
*
node
,
bool
*
is_unsigned
=
nullptr
)
const
;
const
std
::
string
name_scope_
{
"quantize"
};
};
...
...
paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass_tester.cc
浏览文件 @
f836c8aa
...
...
@@ -86,13 +86,15 @@ void InitTensorHolder(Scope* scope, const paddle::platform::Place& place,
void
PreparePass
(
std
::
unique_ptr
<
ir
::
Graph
>*
graph
,
const
ProgramDesc
&
prog
,
const
std
::
initializer_list
<
std
::
string
>
variable_names
,
int
*
original_nodes_num
,
int
*
current_nodes_num
)
{
int
*
original_nodes_num
,
int
*
current_nodes_num
,
std
::
string
var_without_scale
=
""
)
{
auto
place
=
paddle
::
platform
::
CPUPlace
();
NaiveExecutor
exe
{
place
};
Scope
scope
;
exe
.
CreateVariables
(
prog
,
0
,
true
,
&
scope
);
auto
*
scales
=
new
VarQuantScale
();
for
(
auto
&
v
:
variable_names
)
{
if
(
v
.
compare
(
var_without_scale
)
==
0
)
continue
;
InitTensorHolder
(
&
scope
,
place
,
v
.
c_str
());
LoDTensor
tensor
;
tensor
.
Resize
({
1
});
...
...
@@ -475,6 +477,42 @@ TEST(CpuQuantizePass, reshapeBetweenNonQuantizedOp) {
transpose_count
,
reshape_count
,
quant_count
,
dequant_count
,
added_nodes_count
,
2.0
f
*
127
);
}
void
MainTestCheckScales
(
const
ProgramDesc
&
prog
,
const
std
::
initializer_list
<
std
::
string
>
variable_names
,
const
std
::
string
&
var_without_scale
)
{
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
prog
));
std
::
stringstream
error_msg_ss
;
error_msg_ss
<<
"Quantization scale for the variable "
<<
var_without_scale
<<
" is missing."
;
bool
caught_exception
=
false
;
try
{
int
original_nodes_num
,
current_nodes_num
;
PreparePass
(
&
graph
,
prog
,
variable_names
,
&
original_nodes_num
,
&
current_nodes_num
,
var_without_scale
);
}
catch
(
paddle
::
platform
::
EnforceNotMet
&
error
)
{
caught_exception
=
true
;
std
::
string
ex_msg
=
error
.
what
();
EXPECT_NE
(
ex_msg
.
find
(
error_msg_ss
.
str
()),
std
::
string
::
npos
);
}
EXPECT_TRUE
(
caught_exception
);
}
// (a, w)->Conv->o
ProgramDesc
BuildProgramDescCheckScalesConv
()
{
ProgramDesc
prog
;
SetOp
(
&
prog
,
"conv2d"
,
"Conv"
,
{
"a"
,
"w"
},
{
"o"
},
true
,
true
);
return
prog
;
}
// Check if an exception with a proper message is thrown when quantization scale
// is missing for a variable
TEST
(
CPUQuantizePass
,
check_scales
)
{
const
std
::
initializer_list
<
std
::
string
>
var_names
=
{
"a"
,
"w"
,
"o"
};
MainTestCheckScales
(
BuildProgramDescCheckScalesConv
(),
var_names
,
"a"
);
}
}
// namespace
}
// namespace ir
...
...
python/paddle/fluid/contrib/slim/quantization/quantization_mkldnn_pass.py
浏览文件 @
f836c8aa
...
...
@@ -423,8 +423,11 @@ class Qat2Int8MkldnnPass(object):
return
waiting_for_scale
waiting_for_scale
=
_update_scales
(
graph
)
waiting_for_scale_prev
=
set
()
while
len
(
waiting_for_scale
)
!=
0
:
while
len
(
waiting_for_scale
)
!=
0
and
waiting_for_scale
!=
waiting_for_scale_prev
:
waiting_for_scale_prev
=
waiting_for_scale
waiting_for_scale
=
_update_scales
(
graph
)
return
graph
...
...
@@ -547,7 +550,16 @@ class Qat2Int8MkldnnPass(object):
tensor
=
self
.
_scope
.
find_var
(
name
).
get_tensor
()
tensor
.
set
(
array
,
self
.
_place
)
def
_remove_ctrl_vars
(
self
,
graph
):
remove_ctr_vars
=
set
()
for
node
in
graph
.
all_var_nodes
():
if
node
.
is_ctrl_var
():
remove_ctr_vars
.
add
(
node
)
graph
.
safe_remove_nodes
(
remove_ctr_vars
)
return
graph
def
_optimize_fp32_graph
(
self
,
graph
):
graph
=
self
.
_remove_ctrl_vars
(
graph
)
graph
=
self
.
_apply_pass
(
graph
,
'mkldnn_placement_pass'
,
[
'mkldnn_enabled_op_types'
],
[
set
()])
if
self
.
_is_conv_quantized
():
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录