未验证 提交 f69d2c32 编写于 作者: P pangyoki 提交者: GitHub

[PHI] move huber_loss/huber_loss_grad xpu kernel to phi (#45521)

* move huber_loss xpu kernel to phi, test=kunlun

* fix, test=kunlun

* fix paddle_enforce, test=kunlun
上级 6dd13152
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T>
class HuberLossXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* in0 = ctx.Input<Tensor>("X");
auto* in1 = ctx.Input<Tensor>("Y");
auto* residual = ctx.Output<Tensor>("Residual");
auto* out = ctx.Output<Tensor>("Out");
auto delta = ctx.Attr<float>("delta");
auto residual_data = residual->mutable_data<T>(ctx.GetPlace());
auto out_data = out->mutable_data<T>(ctx.GetPlace());
auto in0_data = in0->data<T>();
auto in1_data = in1->data<T>();
auto& dev_ctx =
ctx.template device_context<paddle::platform::XPUDeviceContext>();
int r = xpu::huber_loss<T>(dev_ctx.x_context(),
in0_data,
in1_data,
residual_data,
out_data,
in0->numel(),
1,
delta);
PADDLE_ENFORCE_EQ(
r,
XPU_SUCCESS,
platform::errors::External("XPU API(huber_loss) return wrong "
"value[%d %s]",
r,
XPUAPIErrorMsg[r]));
}
};
template <typename T>
class HuberLossGradXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* residual = ctx.Input<Tensor>("Residual");
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
auto delta = ctx.Attr<float>("delta");
T* dx_data = nullptr;
T* dy_data = nullptr;
if (dx) {
dx_data = dx->mutable_data<T>(ctx.GetPlace());
}
if (dy) {
dy_data = dy->mutable_data<T>(ctx.GetPlace());
}
auto dout_data = dout->data<T>();
auto residual_data = residual->data<T>();
auto& dev_ctx =
ctx.template device_context<paddle::platform::XPUDeviceContext>();
int r = xpu::huber_loss_grad<T>(dev_ctx.x_context(),
residual_data,
dout_data,
dx_data,
dy_data,
dout->numel(),
1,
delta);
PADDLE_ENFORCE_EQ(
r,
XPU_SUCCESS,
platform::errors::External("XPU API(huber_loss_grad) return wrong "
"value[%d %s]",
r,
XPUAPIErrorMsg[r]));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_XPU_KERNEL(huber_loss, ops::HuberLossXPUKernel<float>);
REGISTER_OP_XPU_KERNEL(huber_loss_grad, ops::HuberLossGradXPUKernel<float>);
#endif
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/huber_loss_grad_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
namespace phi {
template <typename T, typename Context>
void HuberLossGradKernel(const Context& dev_ctx,
const DenseTensor& residual,
const DenseTensor& out_grad,
float delta,
DenseTensor* input_grad,
DenseTensor* label_grad) {
T* input_grad_data = nullptr;
T* label_grad_data = nullptr;
if (input_grad) {
input_grad_data = dev_ctx.template Alloc<T>(input_grad);
}
if (label_grad) {
label_grad_data = dev_ctx.template Alloc<T>(label_grad);
}
auto out_grad_data = out_grad.data<T>();
auto residual_data = residual.data<T>();
int r = xpu::huber_loss_grad<T>(dev_ctx.x_context(),
residual_data,
out_grad_data,
input_grad_data,
label_grad_data,
out_grad.numel(),
1,
delta);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "huber_loss_grad");
}
} // namespace phi
PD_REGISTER_KERNEL(
huber_loss_grad, XPU, ALL_LAYOUT, phi::HuberLossGradKernel, float) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/huber_loss_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
namespace phi {
template <typename T, typename Context>
void HuberLossKernel(const Context& dev_ctx,
const DenseTensor& input,
const DenseTensor& label,
float delta,
DenseTensor* out,
DenseTensor* residual) {
auto residual_data = dev_ctx.template Alloc<T>(residual);
auto out_data = dev_ctx.template Alloc<T>(out);
auto in0_data = input.data<T>();
auto in1_data = label.data<T>();
int r = xpu::huber_loss<T>(dev_ctx.x_context(),
in0_data,
in1_data,
residual_data,
out_data,
input.numel(),
1,
delta);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "huber_loss");
}
} // namespace phi
PD_REGISTER_KERNEL(huber_loss, XPU, ALL_LAYOUT, phi::HuberLossKernel, float) {}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册