Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
f53e920d
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f53e920d
编写于
11月 04, 2022
作者:
Y
ykkk2333
提交者:
GitHub
11月 04, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix deepfm and deep_wide bug, add embedding_sparse_grad kernel, test=kunlun (#47365)
上级
9e006987
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
129 addition
and
18 deletion
+129
-18
paddle/fluid/imperative/gradient_accumulator.cc
paddle/fluid/imperative/gradient_accumulator.cc
+10
-3
paddle/fluid/platform/device/xpu/xpu2_op_list.h
paddle/fluid/platform/device/xpu/xpu2_op_list.h
+2
-0
paddle/phi/kernels/selected_rows/xpu/adam_kernel.cc
paddle/phi/kernels/selected_rows/xpu/adam_kernel.cc
+45
-15
paddle/phi/kernels/xpu/embedding_grad_kernel.cc
paddle/phi/kernels/xpu/embedding_grad_kernel.cc
+72
-0
未找到文件。
paddle/fluid/imperative/gradient_accumulator.cc
浏览文件 @
f53e920d
...
...
@@ -483,8 +483,16 @@ std::shared_ptr<ReturnVarType> SelectedRowsMerge(const VarType& src1,
PADDLE_SELECTED_ROWS_ADD
(
phi
::
GPUContext
,
double
);
}
else
{
#endif
PADDLE_SELECTED_ROWS_ADD
(
phi
::
CPUContext
,
float
);
PADDLE_SELECTED_ROWS_ADD
(
phi
::
CPUContext
,
double
);
#if defined(PADDLE_WITH_XPU)
if
(
paddle
::
platform
::
is_xpu_place
(
place
))
{
PADDLE_SELECTED_ROWS_ADD
(
phi
::
XPUContext
,
float
);
}
else
{
#endif
PADDLE_SELECTED_ROWS_ADD
(
phi
::
CPUContext
,
float
);
PADDLE_SELECTED_ROWS_ADD
(
phi
::
CPUContext
,
double
);
#if defined(PADDLE_WITH_XPU)
}
#endif
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
}
#endif
...
...
@@ -858,6 +866,5 @@ void SortedGradientAccumulator::SumGrad(std::shared_ptr<VariableWrapper> var,
dst_var
->
SetType
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
}
}
}
// namespace imperative
}
// namespace paddle
paddle/fluid/platform/device/xpu/xpu2_op_list.h
浏览文件 @
f53e920d
...
...
@@ -195,6 +195,8 @@ XPUOpMap& get_kl2_ops() {
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP64
,
XPUPlace
())})},
{
"embedding_sparse_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"equal"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
INT64
,
XPUPlace
()),
pOpKernelType
(
vartype
::
INT32
,
XPUPlace
()),
...
...
paddle/phi/kernels/selected_rows/xpu/adam_kernel.cc
浏览文件 @
f53e920d
...
...
@@ -50,6 +50,7 @@ void AdamDenseParamSparseGradKernel(
DenseTensor
*
beta1_pow_out
,
DenseTensor
*
beta2_pow_out
,
DenseTensor
*
master_param_outs
)
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
float
*
param_ptr
=
nullptr
;
funcs
::
GetDataPointer
<
Context
,
float
>
(
param
,
&
param_ptr
,
dev_ctx
);
...
...
@@ -62,16 +63,32 @@ void AdamDenseParamSparseGradKernel(
float
*
lr_ptr
=
nullptr
;
funcs
::
GetDataPointer
<
Context
,
float
>
(
learning_rate
,
&
lr_ptr
,
dev_ctx
);
xpu
::
ctx_guard
RAII_GUARD
(
dev_ctx
.
x_context
());
float
*
beta1_pow_ptr
=
nullptr
;
const
float
*
beta1_const_pow_ptr
=
nullptr
;
if
(
beta1_pow
.
place
()
==
CPUPlace
())
{
DenseTensor
xpu_beta1_pow
;
phi
::
Copy
(
dev_ctx
,
beta1_pow
,
beta1_pow
.
place
(),
false
,
&
xpu_beta1_pow
);
if
(
xpu_beta1_pow
.
dtype
()
==
DataType
::
FLOAT16
)
funcs
::
GetDataPointer
<
Context
,
float
>
(
xpu_beta1_pow
,
&
beta1_pow_ptr
,
dev_ctx
);
else
beta1_const_pow_ptr
=
xpu_beta1_pow
.
template
data
<
float
>();
if
(
beta1_pow
.
dtype
()
==
DataType
::
FLOAT16
)
{
XPUType
*
beta1_pow_t
=
RAII_GUARD
.
alloc_l3_or_gm
<
XPUType
>
(
beta1_pow
.
numel
());
paddle
::
memory
::
Copy
(
param
.
place
(),
beta1_pow_t
,
beta1_pow
.
place
(),
beta1_pow
.
data
<
T
>
(),
sizeof
(
T
)
*
beta1_pow
.
numel
());
int
r
=
xpu
::
cast
<
XPUType
,
float
>
(
dev_ctx
.
x_context
(),
beta1_pow_t
,
beta1_pow_ptr
,
beta1_pow
.
numel
());
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"cast"
);
}
else
{
beta1_pow_ptr
=
RAII_GUARD
.
alloc_l3_or_gm
<
float
>
(
beta1_pow
.
numel
());
paddle
::
memory
::
Copy
(
param
.
place
(),
beta1_pow_ptr
,
beta1_pow
.
place
(),
beta1_pow
.
data
<
T
>
(),
sizeof
(
T
)
*
beta1_pow
.
numel
());
}
}
else
{
if
(
beta1_pow
.
dtype
()
==
DataType
::
FLOAT16
)
funcs
::
GetDataPointer
<
Context
,
float
>
(
beta1_pow
,
&
beta1_pow_ptr
,
dev_ctx
);
...
...
@@ -81,14 +98,28 @@ void AdamDenseParamSparseGradKernel(
float
*
beta2_pow_ptr
=
nullptr
;
const
float
*
beta2_const_pow_ptr
=
nullptr
;
if
(
beta2_pow
.
place
()
==
CPUPlace
())
{
DenseTensor
xpu_beta2_pow
;
phi
::
Copy
(
dev_ctx
,
beta2_pow
,
beta2_pow
.
place
(),
false
,
&
xpu_beta2_pow
);
if
(
xpu_beta2_pow
.
dtype
()
==
DataType
::
FLOAT16
)
funcs
::
GetDataPointer
<
Context
,
float
>
(
xpu_beta2_pow
,
&
beta2_pow_ptr
,
dev_ctx
);
else
beta2_const_pow_ptr
=
xpu_beta2_pow
.
template
data
<
float
>();
if
(
beta2_pow
.
dtype
()
==
DataType
::
FLOAT16
)
{
XPUType
*
beta2_pow_t
=
RAII_GUARD
.
alloc_l3_or_gm
<
XPUType
>
(
beta2_pow
.
numel
());
paddle
::
memory
::
Copy
(
param
.
place
(),
beta2_pow_t
,
beta2_pow
.
place
(),
beta2_pow
.
data
<
T
>
(),
sizeof
(
T
)
*
beta2_pow
.
numel
());
int
r
=
xpu
::
cast
<
XPUType
,
float
>
(
dev_ctx
.
x_context
(),
beta2_pow_t
,
beta2_pow_ptr
,
beta2_pow
.
numel
());
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"cast"
);
}
else
{
beta2_pow_ptr
=
RAII_GUARD
.
alloc_l3_or_gm
<
float
>
(
beta2_pow
.
numel
());
paddle
::
memory
::
Copy
(
param
.
place
(),
beta2_pow_ptr
,
beta2_pow
.
place
(),
beta2_pow
.
data
<
T
>
(),
sizeof
(
T
)
*
beta2_pow
.
numel
());
}
}
else
{
if
(
beta2_pow
.
dtype
()
==
DataType
::
FLOAT16
)
funcs
::
GetDataPointer
<
Context
,
float
>
(
beta2_pow
,
&
beta2_pow_ptr
,
dev_ctx
);
...
...
@@ -195,7 +226,6 @@ void AdamDenseParamSparseGradKernel(
int
row_count
=
grad_merge
.
rows
().
size
();
std
::
vector
<
int
>
rows
(
row_count
);
xpu
::
ctx_guard
RAII_GUARD
(
dev_ctx
.
x_context
());
int
*
xpu_rows
=
RAII_GUARD
.
alloc_l3_or_gm
<
int
>
(
row_count
);
std
::
vector
<
int64_t
>
merge_rows
(
grad_merge
.
rows
().
begin
(),
grad_merge
.
rows
().
end
());
...
...
paddle/phi/kernels/xpu/embedding_grad_kernel.cc
浏览文件 @
f53e920d
...
...
@@ -14,6 +14,7 @@
#include "paddle/phi/kernels/embedding_grad_kernel.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
...
...
@@ -60,7 +61,78 @@ void EmbeddingGradKernel(const Context& ctx,
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"embedding_grad"
);
}
template
<
typename
T
,
typename
Context
>
void
EmbeddingSparseGradKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
input
,
const
DenseTensor
&
weight
,
const
DenseTensor
&
out_grad
,
int64_t
padding_idx
,
SelectedRows
*
weight_grad
)
{
DDim
table_dim
=
weight
.
dims
();
xpu
::
ctx_guard
RAII_GUARD
(
ctx
.
x_context
());
std
::
vector
<
int64_t
>
ids
(
input
.
numel
());
if
(
input
.
dtype
()
==
phi
::
DataType
::
INT64
)
{
paddle
::
memory
::
Copy
(
CPUPlace
(),
ids
.
data
(),
input
.
place
(),
input
.
data
<
int64_t
>
(),
sizeof
(
int64_t
)
*
input
.
numel
());
}
else
if
(
input
.
dtype
()
==
phi
::
DataType
::
INT32
)
{
int64_t
*
id_t
=
RAII_GUARD
.
alloc_l3_or_gm
<
int64_t
>
(
input
.
numel
());
int
r
=
xpu
::
cast
<
int32_t
,
int64_t
>
(
ctx
.
x_context
(),
input
.
data
<
int
>
(),
id_t
,
input
.
numel
());
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"cast"
);
paddle
::
memory
::
Copy
(
CPUPlace
(),
ids
.
data
(),
input
.
place
(),
id_t
,
sizeof
(
int64_t
)
*
input
.
numel
());
}
else
{
PADDLE_THROW
(
phi
::
errors
::
Unimplemented
(
"emebdding input only support int32 and int64"
));
}
auto
ids_num
=
static_cast
<
int64_t
>
(
input
.
numel
());
// Since paddings are not trainable and fixed in forward, the gradient of
// paddings makes no sense and we don't deal with it in backward.
auto
*
d_table
=
weight_grad
;
auto
*
d_output
=
&
out_grad
;
d_table
->
set_rows
(
ids
);
auto
*
d_table_value
=
d_table
->
mutable_value
();
d_table_value
->
Resize
({
ids_num
,
table_dim
[
1
]});
ctx
.
template
Alloc
<
T
>(
d_table_value
);
d_table
->
set_height
(
table_dim
[
0
]);
auto
*
d_output_data
=
d_output
->
template
data
<
T
>();
auto
*
d_table_data
=
d_table_value
->
template
data
<
T
>();
auto
d_output_dims
=
d_output
->
dims
();
auto
d_output_dims_2d
=
flatten_to_2d
(
d_output_dims
,
d_output_dims
.
size
()
-
1
);
PADDLE_ENFORCE_EQ
(
d_table_value
->
dims
(),
d_output_dims_2d
,
phi
::
errors
::
InvalidArgument
(
"ShapeError: The shape of lookup_table@Grad and "
"output@Grad should be same. "
"But received lookup_table@Grad's shape = [%s], "
"output@Grad's shape = [%s]."
,
d_table_value
->
dims
(),
d_output_dims_2d
));
int
r
=
xpu
::
copy
<
T
>
(
ctx
.
x_context
(),
d_output_data
,
d_table_data
,
d_output
->
numel
());
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"copy"
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
embedding_grad
,
XPU
,
ALL_LAYOUT
,
phi
::
EmbeddingGradKernel
,
float
)
{}
PD_REGISTER_KERNEL
(
embedding_sparse_grad
,
XPU
,
ALL_LAYOUT
,
phi
::
EmbeddingSparseGradKernel
,
float
)
{}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录