Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
f4f5f3f2
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f4f5f3f2
编写于
9月 22, 2020
作者:
Z
zhhsplendid
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add test_ptb_lm_v2.py, test=develop
上级
5c0b44d0
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
315 addition
and
1 deletion
+315
-1
python/paddle/fluid/tests/unittests/dygraph_to_static/test_ptb_lm.py
...le/fluid/tests/unittests/dygraph_to_static/test_ptb_lm.py
+1
-1
python/paddle/fluid/tests/unittests/dygraph_to_static/test_ptb_lm_v2.py
...fluid/tests/unittests/dygraph_to_static/test_ptb_lm_v2.py
+314
-0
未找到文件。
python/paddle/fluid/tests/unittests/dygraph_to_static/test_ptb_lm.py
浏览文件 @
f4f5f3f2
...
@@ -279,7 +279,7 @@ def train(place):
...
@@ -279,7 +279,7 @@ def train(place):
speed
))
speed
))
avg_batch_time
=
time
.
time
()
avg_batch_time
=
time
.
time
()
return
out_loss
,
last_hidden
.
numpy
(),
last_cell
.
numpy
()
return
out_loss
,
last_hidden
.
numpy
(),
last_cell
.
numpy
()
def
train_dygraph
(
place
):
def
train_dygraph
(
place
):
...
...
python/paddle/fluid/tests/unittests/dygraph_to_static/test_ptb_lm_v2.py
0 → 100644
浏览文件 @
f4f5f3f2
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
,
division
,
print_function
import
logging
import
time
import
unittest
import
numpy
as
np
import
paddle
PRINT_STEP
=
20
SEED
=
2020
program_translator
=
paddle
.
fluid
.
dygraph
.
dygraph_to_static
.
ProgramTranslator
()
class
SimpleLSTMRNN
(
paddle
.
fluid
.
Layer
):
def
__init__
(
self
,
hidden_size
,
num_steps
,
num_layers
=
2
,
init_scale
=
0.1
,
dropout
=
None
):
super
(
SimpleLSTMRNN
,
self
).
__init__
()
self
.
_hidden_size
=
hidden_size
self
.
_num_layers
=
num_layers
self
.
_init_scale
=
init_scale
self
.
_dropout
=
dropout
self
.
_num_steps
=
num_steps
self
.
cell_array
=
[]
self
.
hidden_array
=
[]
self
.
weight_1_arr
=
[]
self
.
weight_2_arr
=
[]
self
.
bias_arr
=
[]
self
.
mask_array
=
[]
for
i
in
range
(
self
.
_num_layers
):
weight_1
=
self
.
create_parameter
(
attr
=
paddle
.
ParamAttr
(
initializer
=
paddle
.
nn
.
initializer
.
Uniform
(
low
=-
self
.
_init_scale
,
high
=
self
.
_init_scale
)),
shape
=
[
self
.
_hidden_size
*
2
,
self
.
_hidden_size
*
4
],
dtype
=
"float32"
,
default_initializer
=
paddle
.
nn
.
initializer
.
Uniform
(
low
=-
self
.
_init_scale
,
high
=
self
.
_init_scale
))
self
.
weight_1_arr
.
append
(
self
.
add_parameter
(
'w_%d'
%
i
,
weight_1
))
bias_1
=
self
.
create_parameter
(
attr
=
paddle
.
ParamAttr
(
initializer
=
paddle
.
nn
.
initializer
.
Uniform
(
low
=-
self
.
_init_scale
,
high
=
self
.
_init_scale
)),
shape
=
[
self
.
_hidden_size
*
4
],
dtype
=
"float32"
,
default_initializer
=
paddle
.
nn
.
initializer
.
Constant
(
0.0
))
self
.
bias_arr
.
append
(
self
.
add_parameter
(
'b_%d'
%
i
,
bias_1
))
def
forward
(
self
,
input_embedding
,
init_hidden
=
None
,
init_cell
=
None
):
cell_array
=
[]
hidden_array
=
[]
for
i
in
range
(
self
.
_num_layers
):
hidden_array
.
append
(
init_hidden
[
i
])
cell_array
.
append
(
init_cell
[
i
])
res
=
[]
for
index
in
range
(
self
.
_num_steps
):
step_input
=
input_embedding
[:,
index
,
:]
for
k
in
range
(
self
.
_num_layers
):
pre_hidden
=
hidden_array
[
k
]
pre_cell
=
cell_array
[
k
]
weight_1
=
self
.
weight_1_arr
[
k
]
bias
=
self
.
bias_arr
[
k
]
nn
=
paddle
.
concat
(
x
=
[
step_input
,
pre_hidden
],
axis
=
1
)
gate_input
=
paddle
.
matmul
(
x
=
nn
,
y
=
weight_1
)
gate_input
=
paddle
.
add
(
x
=
gate_input
,
y
=
bias
)
i
,
j
,
f
,
o
=
paddle
.
split
(
x
=
gate_input
,
num_or_sections
=
4
,
axis
=-
1
)
c
=
pre_cell
*
paddle
.
nn
.
functional
.
sigmoid
(
f
)
+
paddle
.
nn
.
functional
.
sigmoid
(
i
)
*
paddle
.
tanh
(
j
)
m
=
paddle
.
tanh
(
c
)
*
paddle
.
nn
.
functional
.
sigmoid
(
o
)
hidden_array
[
k
]
=
m
cell_array
[
k
]
=
c
step_input
=
m
if
self
.
_dropout
is
not
None
and
self
.
_dropout
>
0.0
:
step_input
=
paddle
.
fluid
.
layers
.
dropout
(
step_input
,
dropout_prob
=
self
.
_dropout
,
dropout_implementation
=
'upscale_in_train'
)
res
.
append
(
step_input
)
real_res
=
paddle
.
concat
(
x
=
res
,
axis
=
1
)
real_res
=
paddle
.
fluid
.
layers
.
reshape
(
real_res
,
[
-
1
,
self
.
_num_steps
,
self
.
_hidden_size
])
last_hidden
=
paddle
.
concat
(
x
=
hidden_array
,
axis
=
1
)
last_hidden
=
paddle
.
fluid
.
layers
.
reshape
(
last_hidden
,
shape
=
[
-
1
,
self
.
_num_layers
,
self
.
_hidden_size
])
last_hidden
=
paddle
.
transpose
(
x
=
last_hidden
,
perm
=
[
1
,
0
,
2
])
last_cell
=
paddle
.
concat
(
x
=
cell_array
,
axis
=
1
)
last_cell
=
paddle
.
fluid
.
layers
.
reshape
(
last_cell
,
shape
=
[
-
1
,
self
.
_num_layers
,
self
.
_hidden_size
])
last_cell
=
paddle
.
transpose
(
x
=
last_cell
,
perm
=
[
1
,
0
,
2
])
return
real_res
,
last_hidden
,
last_cell
class
PtbModel
(
paddle
.
fluid
.
Layer
):
def
__init__
(
self
,
hidden_size
,
vocab_size
,
num_layers
=
2
,
num_steps
=
20
,
init_scale
=
0.1
,
dropout
=
None
):
super
(
PtbModel
,
self
).
__init__
()
self
.
hidden_size
=
hidden_size
self
.
vocab_size
=
vocab_size
self
.
init_scale
=
init_scale
self
.
num_layers
=
num_layers
self
.
num_steps
=
num_steps
self
.
dropout
=
dropout
self
.
simple_lstm_rnn
=
SimpleLSTMRNN
(
hidden_size
,
num_steps
,
num_layers
=
num_layers
,
init_scale
=
init_scale
,
dropout
=
dropout
)
self
.
embedding
=
paddle
.
fluid
.
dygraph
.
nn
.
Embedding
(
size
=
[
vocab_size
,
hidden_size
],
dtype
=
'float32'
,
is_sparse
=
False
,
param_attr
=
paddle
.
ParamAttr
(
name
=
'embedding_para'
,
initializer
=
paddle
.
nn
.
initializer
.
Uniform
(
low
=-
init_scale
,
high
=
init_scale
)))
self
.
softmax_weight
=
self
.
create_parameter
(
attr
=
paddle
.
ParamAttr
(),
shape
=
[
self
.
hidden_size
,
self
.
vocab_size
],
dtype
=
"float32"
,
default_initializer
=
paddle
.
nn
.
initializer
.
Uniform
(
low
=-
self
.
init_scale
,
high
=
self
.
init_scale
))
self
.
softmax_bias
=
self
.
create_parameter
(
attr
=
paddle
.
ParamAttr
(),
shape
=
[
self
.
vocab_size
],
dtype
=
"float32"
,
default_initializer
=
paddle
.
nn
.
initializer
.
Uniform
(
low
=-
self
.
init_scale
,
high
=
self
.
init_scale
))
def
build_once
(
self
,
input
,
label
,
init_hidden
,
init_cell
):
pass
@
paddle
.
fluid
.
dygraph
.
jit
.
declarative
def
forward
(
self
,
input
,
label
,
init_hidden
,
init_cell
):
init_h
=
paddle
.
fluid
.
layers
.
reshape
(
init_hidden
,
shape
=
[
self
.
num_layers
,
-
1
,
self
.
hidden_size
])
init_c
=
paddle
.
fluid
.
layers
.
reshape
(
init_cell
,
shape
=
[
self
.
num_layers
,
-
1
,
self
.
hidden_size
])
x_emb
=
self
.
embedding
(
input
)
x_emb
=
paddle
.
fluid
.
layers
.
reshape
(
x_emb
,
shape
=
[
-
1
,
self
.
num_steps
,
self
.
hidden_size
])
if
self
.
dropout
is
not
None
and
self
.
dropout
>
0.0
:
x_emb
=
paddle
.
fluid
.
layers
.
dropout
(
x_emb
,
dropout_prob
=
self
.
dropout
,
dropout_implementation
=
'upscale_in_train'
)
rnn_out
,
last_hidden
,
last_cell
=
self
.
simple_lstm_rnn
(
x_emb
,
init_h
,
init_c
)
projection
=
paddle
.
matmul
(
x
=
rnn_out
,
y
=
self
.
softmax_weight
)
projection
=
paddle
.
add
(
x
=
projection
,
y
=
self
.
softmax_bias
)
loss
=
paddle
.
nn
.
functional
.
softmax_with_cross_entropy
(
logits
=
projection
,
label
=
label
,
soft_label
=
False
)
loss
=
paddle
.
fluid
.
layers
.
reshape
(
loss
,
shape
=
[
-
1
,
self
.
num_steps
])
loss
=
paddle
.
reduce_mean
(
loss
,
dim
=
[
0
])
loss
=
paddle
.
reduce_sum
(
loss
)
return
loss
,
last_hidden
,
last_cell
def
debug_emb
(
self
):
np
.
save
(
"emb_grad"
,
self
.
x_emb
.
gradient
())
def
train
(
place
):
num_layers
=
1
batch_size
=
4
hidden_size
=
10
num_steps
=
3
init_scale
=
0.1
max_epoch
=
1
dropout
=
0.0
vocab_size
=
1000
batch_num
=
200
paddle
.
disable_static
(
place
)
paddle
.
manual_seed
(
SEED
)
paddle
.
framework
.
random
.
_manual_program_seed
(
SEED
)
ptb_model
=
PtbModel
(
hidden_size
=
hidden_size
,
vocab_size
=
vocab_size
,
num_layers
=
num_layers
,
num_steps
=
num_steps
,
init_scale
=
init_scale
,
dropout
=
dropout
)
sgd
=
paddle
.
optimizer
.
SGD
(
learning_rate
=
1e-3
,
parameters
=
ptb_model
.
parameters
())
for
epoch_id
in
range
(
max_epoch
):
total_loss
=
0.0
iters
=
0.0
total_sample
=
0
init_hidden_data
=
np
.
zeros
(
(
num_layers
,
batch_size
,
hidden_size
),
dtype
=
'float32'
)
init_cell_data
=
np
.
zeros
(
(
num_layers
,
batch_size
,
hidden_size
),
dtype
=
'float32'
)
init_hidden
=
paddle
.
to_tensor
(
data
=
init_hidden_data
,
dtype
=
None
,
place
=
None
,
stop_gradient
=
True
)
init_cell
=
paddle
.
to_tensor
(
data
=
init_cell_data
,
dtype
=
None
,
place
=
None
,
stop_gradient
=
True
)
for
step_id
in
range
(
batch_num
):
x_data
=
np
.
arange
(
12
).
reshape
(
4
,
3
).
astype
(
'int64'
)
y_data
=
np
.
arange
(
1
,
13
).
reshape
(
4
,
3
).
astype
(
'int64'
)
y_data
=
y_data
.
reshape
((
-
1
,
1
))
x_data
=
x_data
.
reshape
((
-
1
,
num_steps
,
1
))
y_data
=
y_data
.
reshape
((
-
1
,
num_steps
,
1
))
x
=
paddle
.
to_tensor
(
data
=
x_data
,
dtype
=
None
,
place
=
None
,
stop_gradient
=
True
)
y
=
paddle
.
to_tensor
(
data
=
y_data
,
dtype
=
None
,
place
=
None
,
stop_gradient
=
True
)
dy_loss
,
last_hidden
,
last_cell
=
ptb_model
(
x
,
y
,
init_hidden
,
init_cell
)
out_loss
=
dy_loss
.
numpy
()
dy_loss
.
backward
()
sgd
.
minimize
(
dy_loss
)
ptb_model
.
clear_gradients
()
total_loss
+=
out_loss
iters
+=
num_steps
total_sample
+=
1
if
step_id
%
PRINT_STEP
==
0
:
if
step_id
==
0
:
logging
.
info
(
"epoch %d | step %d, loss %0.3f"
%
(
epoch_id
,
step_id
,
total_loss
/
total_sample
))
avg_batch_time
=
time
.
time
()
else
:
speed
=
PRINT_STEP
/
(
time
.
time
()
-
avg_batch_time
)
logging
.
info
(
"epoch %d | step %d, loss %0.3f, speed %.3f steps/s"
%
(
epoch_id
,
step_id
,
total_loss
/
total_sample
,
speed
))
avg_batch_time
=
time
.
time
()
ret
=
out_loss
,
last_hidden
.
numpy
(),
last_cell
.
numpy
()
paddle
.
enable_static
()
return
ret
def
train_dygraph
(
place
):
program_translator
.
enable
(
False
)
return
train
(
place
)
def
train_static
(
place
):
program_translator
.
enable
(
True
)
return
train
(
place
)
class
TestPtb
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
place
=
paddle
.
CUDAPlace
(
0
)
if
paddle
.
fluid
.
is_compiled_with_cuda
()
\
else
paddle
.
CPUPlace
()
def
test_check_result
(
self
):
loss_1
,
hidden_1
,
cell_1
=
train_static
(
self
.
place
)
loss_2
,
hidden_2
,
cell_2
=
train_dygraph
(
self
.
place
)
self
.
assertTrue
(
np
.
allclose
(
loss_1
,
loss_2
),
msg
=
"static loss: {}
\n
dygraph loss: {}"
.
format
(
loss_1
,
loss_2
))
self
.
assertTrue
(
np
.
allclose
(
hidden_1
,
hidden_2
),
msg
=
"static hidden: {}
\n
dygraph acc1: {}"
.
format
(
hidden_1
,
hidden_2
))
self
.
assertTrue
(
np
.
allclose
(
cell_1
,
cell_2
),
msg
=
"static cell: {}
\n
dygraph cell: {}"
.
format
(
cell_1
,
cell_2
))
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录