未验证 提交 f3fa2ed3 编写于 作者: 张春乔 提交者: GitHub

[xdoctest] reformat example code with google style in No. 309 (#56596)

* input.py

* Update python/paddle/nn/functional/input.py

* Update input.py

* Update all_gather.py

* Update all_gather.py

* xdoc

* Apply suggestions from code review

* Update python/paddle/distributed/models/moe/utils.py

* Apply suggestions from code review
Co-authored-by: NNyakku Shigure <sigure.qaq@gmail.com>

* Apply suggestions from code review

* Apply suggestions from code review

* Apply suggestions from code review

---------
Co-authored-by: NNyakku Shigure <sigure.qaq@gmail.com>
上级 487660a1
......@@ -27,17 +27,17 @@ def _number_count(numbers, upper_range):
out (Tensor): The output expert count.
Examples:
.. code-block:: python
# required: distributed
import paddle
numbers = [
[0, 2],
[0, 2]
]
upper_range = 6
numbers = paddle.to_tensor(numbers, dtype="int32")
number_count = paddle.distributed.utils.number_count(numbers, upper_range)
print(number_count) # the result: [2, 0, 2, 0, 0, 0]
>>> # doctest: +REQUIRES(env: DISTRIBUTED)
>>> import paddle
>>> from paddle.distributed.models.moe import utils
>>> numbers = [[0, 2], [0, 2]]
>>> upper_range = 6
>>> numbers = paddle.to_tensor(numbers, dtype="int64")
>>> number_count = utils._number_count(numbers, upper_range)
>>> print(number_count)
Tensor(shape=[6], dtype=int64, place=Place(gpu:0), stop_gradient=True,
[2, 0, 2, 0, 0, 0])
"""
if in_dynamic_mode():
return _legacy_C_ops.number_count(numbers, 'upper_range', upper_range)
......@@ -73,18 +73,18 @@ def _assign_pos(x, cum_count):
Examples:
.. code-block:: python
# required: distributed
import paddle
number_count = [2, 0, 2, 0]
numbers = [
[0, 2],
[0, 2]
]
number_count = paddle.to_tensor(number_count)
numbers = paddle.to_tensor(numbers, dtype="int32")
num_cum = paddle.cumsum(number_count)
pos = paddle.distributed.utils.assign_pos(x=numbers, cum_count=num_cum)
print(pos) # the result: (2, 0, 3, 1)
>>> # doctest: +REQUIRES(env: DISTRIBUTED)
>>> import paddle
>>> from paddle.distributed.models.moe import utils
>>> number_count = [2, 0, 2, 0]
>>> numbers = [[0, 2], [0, 2]]
>>> number_count = paddle.to_tensor(number_count, dtype="int64")
>>> numbers = paddle.to_tensor(numbers, dtype="int64")
>>> num_cum = paddle.cumsum(number_count)
>>> pos = utils._assign_pos(x=numbers, cum_count=num_cum)
>>> print(pos)
Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
[2, 0, 3, 1])
"""
if in_dynamic_mode():
return _legacy_C_ops.assign_pos(x, cum_count, cum_count[-1])
......@@ -140,15 +140,19 @@ def _limit_by_capacity(expert_count, capacity, n_worker):
out (Tensor): The output expert count limit by capacity.
Examples:
.. code-block:: python
# required: distributed
import paddle
expert_count = [1, 2, 2, 8, 3, 6]
capacity = [5, 5, 5]
n_work = 2
expert_count = paddle.to_tensor(expert_count, dtype="int32")
capacity = paddle.to_tensor(capacity, dtype="int32")
out = paddle.distributed.utils.limit_by_capacity(expert_count, capacity, n_work)
print(out) # the result: [1, 2, 2, 4, 3, 3]
>>> # doctest: +REQUIRES(env: DISTRIBUTED)
>>> import paddle
>>> from paddle.distributed.models.moe import utils
>>> expert_count = [1, 2, 2, 8, 3, 6]
>>> capacity = [5, 5, 5]
>>> n_work = 2
>>> expert_count = paddle.to_tensor(expert_count, dtype="int64")
>>> capacity = paddle.to_tensor(capacity, dtype="int64")
>>> out = utils._limit_by_capacity(expert_count, capacity, n_work)
>>> print(out)
Tensor(shape=[6], dtype=int64, place=Place(gpu:0), stop_gradient=True,
[1, 2, 2, 4, 3, 3])
"""
if in_dynamic_mode():
return _legacy_C_ops.limit_by_capacity(
......@@ -186,14 +190,19 @@ def _prune_gate_by_capacity(gate_idx, expert_count, n_expert, n_worker):
Examples:
.. code-block:: python
import paddle
gate_idx = paddle.to_tensor([1, 3, 3, 3, 3, 2, 1, 1], dtype='int32')
expert_count = paddle.to_tensor([0, 3, 1, 3, 0, 0, 0, 0], dtype='int32')
n_worker = 1
new_gate_id = paddle.distributed.utils.prune_gate_by_capacity(gate_idx, expert_count, n_expert, n_worker)
print(new_gate_id)
# Tensor(shape=[8], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
[1, 3, 3, 3, -1, 2, 1, 1])
>>> # doctest: +REQUIRES(env: DISTRIBUTED)
>>> import paddle
>>> from paddle.distributed.models.moe import utils
>>> gate_idx = paddle.to_tensor([1, 3, 3, 3, 3, 2, 1, 1], dtype='int64')
>>> expert_count = paddle.to_tensor([0, 3, 1, 3, 0, 0, 0, 0], dtype='int64')
>>> n_worker = 1
>>> n_expert = 8
>>> new_gate_id = utils._prune_gate_by_capacity(
... gate_idx, expert_count, n_expert, n_worker
... )
>>> print(new_gate_id)
Tensor(shape=[8], dtype=int64, place=Place(gpu:0), stop_gradient=True,
[1, 3, 3, 3, -1, 2, 1, 1])
"""
if in_dynamic_mode():
return _legacy_C_ops.prune_gate_by_capacity(
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册