提交 f32f84a4 编写于 作者: W WangXi 提交者: sandyhouse

update

上级 c7472f16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..common import is_optimizer_op, OP_ROLE_KEY, OpRole
from paddle.fluid import unique_name
class OffloadHelper(object):
cpu_place_type = 0
cuda_place_type = 1
cuda_pinned_place_type = 2
def __init__(self):
pass
"0: dst is on CPUPlace. "
"1: dst is on CUDAPlace. "
"2: dst is on CUDAPinnedPlace. "
def _insert_memcpy_op(self, block, idx, src_name, dst_name, dst_place_type):
src_var = block.var(src_name)
dst_var = block.var(dst_name)
block._insert_op_without_sync(
idx,
type='memcpy',
inputs={'X': src_var},
outputs={'Out': dst_var},
attrs={
'dst_place_type': dst_place_type,
OP_ROLE_KEY: OpRole.Optimize,
})
def _insert_fetch_op(self, block, idx, src_name, dst_name):
self._insert_memcpy_op(block, idx, src_name, dst_name,
OffloadHelper.cuda_place_type)
def _insert_offload_op(self, block, idx, src_name, dst_name):
self._insert_memcpy_op(block, idx, src_name, dst_name,
OffloadHelper.cuda_pinned_place_type)
def _get_offload_var_name(self, name):
return unique_name.generate(name + '@offload')
def _create_offload_var(self, var_name, offload_var_name, blocks):
for block in blocks:
var = block.var(var_name)
var.persistable = False
offload_var = block.create_var(
name=offload_var_name,
shape=var.shape,
dtype=var.dtype,
persistable=True)
def offload(self, block, startup_block):
"""
(m1, m2) = prefetch(m1@offload, m2@offload)
(m1out, m2out, pout) = adam(m1, m2, p)
(m1@offload, m2@offload) = memcpy(m1, m2)
"""
vars_name_to_offload_name = dict()
# main_block add offload
for idx, op in reversed(list(enumerate(block.ops))):
if not is_optimizer_op(op):
break
vars_name = []
if op.type == "adam":
# {Moment1Out = [''], Moment2Out = [''], ParamOut = ['']} =
# adam(inputs={Moment1 = [''], Moment2 = [''], Param = ['']})
vars_name.append(op.desc.input("Moment1")[0])
vars_name.append(op.desc.input("Moment1")[0])
elif op.type == 'momentum':
pass
elif op.type == 'lars':
pass
elif op.type == 'lamb':
pass
# step1: create and init offload_var
for var_name in vars_name:
assert var_name not in vars_name_to_offload_name
offload_var_name = self._get_offload_var_name(var_name)
vars_name_to_offload_name[var_name] = offload_var_name
self._create_offload_var(var_name, offload_var_name,
[block, startup_block])
# step2: insert offload op
for var_name in vars_name:
offload_var_name = vars_name_to_offload_name[var_name]
self._insert_offload_op(block, idx + 1, var_name,
offload_var_name)
# step3: insert fetch op
for var_name in vars_name:
offload_var_name = vars_name_to_offload_name[var_name]
self._insert_fetch_op(block, idx, offload_var_name, var_name)
# startup_block add offload
visited_vars = set()
for idx, op in reversed(list(enumerate(startup_block.ops))):
for out_name in op.output_arg_names:
if out_name in visited_vars:
continue
if out_name in vars_name_to_offload_name:
var_name = out_name
offload_var_name = vars_name_to_offload_name[var_name]
# insert offload op after var is generated
self._insert_offload_op(startup_block, idx + 1, var_name,
offload_var_name)
visited_vars.add(out_name)
......@@ -22,6 +22,7 @@ from paddle.distributed.fleet.meta_optimizers.sharding.shard import Shard, Progr
from paddle.distributed.fleet.meta_optimizers.sharding.fp16_helper import FP16Utils
from paddle.distributed.fleet.meta_optimizers.sharding.weight_decay_helper import WeightDecayHelper
from paddle.distributed.fleet.meta_optimizers.sharding.gradient_clip_helper import GradientClipHelper
from .sharding.offload_helper import OffloadHelper
from paddle.distributed.fleet.meta_optimizers.sharding.prune import ProgramDeps
from paddle.distributed.fleet.meta_optimizers.sharding.utils import *
......@@ -245,6 +246,7 @@ class ShardingOptimizer(MetaOptimizerBase):
# 'op_role': core.op_proto_and_checker_maker.OpRole.LRSched,
# })
pass
#def _create_var(block, ref_var, name):
# """
# Create a new var for block, which has the same type,
......@@ -371,6 +373,10 @@ class ShardingOptimizer(MetaOptimizerBase):
# 'op_role_var': op_role_var})
main_block._sync_with_cpp()
# TODO(wangxi): add optimize offload
offload_helper = OffloadHelper()
offload_helper.offload(main_block, startup_block)
with open("start_sharding_%d" % self.role_maker._worker_index(),
'w') as f:
f.writelines(str(startup_block.program))
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册