提交 f31bb147 编写于 作者: W wanghaoshuang

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into fluid_init

# Varient Length supported RNN Design
For the learning of variable length sequences, the existing mainstream frameworks such as tensorflow, pytorch, caffe2, mxnet and so on all use padding.
Different-length sequences in a mini-batch will be padded with zeros and transformed to same length.
The existing RNN implementations of the PaddlePaddle is `RecurrentLayerGroup`,
which supports the variable length sequences without padding.
This doc will design fluid's RNN based on this idea.
## Multi-layer sequence data format `LODTensor`
At present, Paddle stores data in one mini-batch in one-dimensional array.
`Argument.sequenceStartPositions` is used to store information for each sentence.
In Paddle, `Argument.subSequenceStartPositions` is used to store 2 levels of sequence information, while higher dimensional sequences can not be supported.
In order to support the storage of `N-level` sequences, we define sequence information as the following data structure.
```c++
std::shared_ptr<std::vector<std::vector<int>>> lod_start_pos_;
```
Or more clearly defined here
```c++
typedef std::vector<int> level_t;
std::vector<level_t> lod_start_pos;
```
Each `level_t` here stores a level of offset information consistent with paddle's current practice.
In order to transmit sequence information more transparently, we have introduced a new tensor called `LODTensor`[1].
Its tensor-related interfaces all inherit directly from `Tensor`, but it also adds serial-related interfaces.
Thus, when working with a `LODTensor`, ordinary `Op` is used directly as `Tensor`.
The `Op` of the operation sequence will additionally operate the relevant interface of the `LODTensor` variable-length sequence operation.
The definition of `LODTensor` is as follows:
```c++
class LODTensor : public Tensor {
public:
size_t Levels() const { return seq_start_positions_.size(); }
size_t Elements(int level = 0) const {
return seq_start_positions_[level].size();
}
// slice of level[elem_begin: elem_end]
// NOTE low performance in slice seq_start_positions_.
// TODO should call Tensor's Slice.
LODTensor LODSlice(int level, int elem_begin, int elem_end) const;
// slice with tensor's data shared with this.
LODTensor LODSliceShared(int level, int elem_begin, int elem_end) const;
// copy other's lod_start_pos_, to share LOD info.
// NOTE the LOD info sould not be changed.
void ShareConstLODFrom(const LODTensor &other) {
lod_start_pos_ = other.lod_start_pos_;
}
// copy other's lod_start_pos_'s content, free to mutate.
void ShareMutableLODFrom(const LODTensor &other) {
lod_start_pos_ = std::make_shared <
std::vector<std::vector<int>>(other.lod_start_pos_.begin(),
other.lod_start_pos_.end());
}
private:
std::shared_ptr<std::vector<std::vector<int>>> lod_start_pos_;
};
```
Among them, `lod_start_pos_` uses `shared_ptr` to reduce the cost of storage and replication.
`LODTensor` can be thought as an extension of `Tensor`, which is almost completely compatible with the original `Tensor`.
## How to support the framework
### Replace `Tensor` with `LoDTensor`
To implement the passing of `LODTensor`, most `Tensor` in the framework need to be replaced with `LODTensor`.
Simple implementation, directly **replace all previous `Tensor` with `LODTensor`** , where you can directly modify the `Tensor` interface created in `pybind.cc`.
In addition, the user may need to perceive the existence of a sequence (such as the sequence of the visualization needs to parse the output sequence in the model), so some of the serial operation APIs also need to be exposed to the python layer.
### Transmit `lod_start_pos` along with the Op call chain
`lod_start_pos` is passed along with the Op call chain
The framework needs to support the following features to implement the transmit of `lod_start_pos`:
1. Implement the transfer as `shared_ptr`
- Do not modify the contents of `lod_start_pos` as a consumer
- Modify producer of `lod_start_pos` as producer
- Conventions consumer only needs to copy `shared_ptr` passed over
- producer needs to create its own independent memory to store its own independent modifications and expose `shared_ptr` to subsequent consumer
- Since the transfer process is implemented by copying `shared_ptr`, the framework only needs to pass `lod_start_pos` once.
2. Op is transparent enough not to sense `lod_start_pos`
3. Producer Op that needs to modify `lod_start_pos` can update its `lod_start_pos` data when `Run`
## sorted by length
After sorting by length, the batch size from the forward time step will naturally decrement, and you can directly plug it into Net to do the batch calculation.
For example, the original input:
```
origin:
xxxx
xx
xxx
-> sorted:
xxxx
xxx
xx
```
After `SegmentInputs`, there will be 4 time steps, the input of each time step is as follows (vertical arrangement)
```
0 1 2 3
x x x x
x x x
x x
```
In order to track the changes before and after sorting, use here
```c++
struct SortedSeqItem {
void *start{nullptr};
void *end{nullptr};
};
std::vector<SortedSeqItem> sorted_seqs;
```
To track the position of the sequence after sorting, and add a new interface
```c++
std::vector<SortedSeqItem> SortBySeqLen(const LODTensor& tensor);
```
Due to the sequence of input sequences, the following existing interfaces need to be modified:
- InitMemories, memory needs to be rearranged according to `sorted_seqs`
- SetmentInputs
- ConcatOutputs
In addition, because `sorted_seqs` needs to be multiplexed with `RecurrentGradientOp`, it will become a new output of `RecurrentOp`.
It is passed in as an input to `RecurrentGradientOp`.
## InitMemories
Due to the sequence change, the order of the elements on the `boot_memories` batch also needs to be rearranged accordingly.
## SegmentInputs
`SegmentInputs` relies on the information of `sorted_seqs` to cut the original sequence from the horizontal to the input of each step in the sorted sequence order.
the transition is as follows:
```
origin:
xxxx
xx
xxx
|
|
\ /
!
0 1 2 3
x x x x
x x x
x x
```
## ConcatOutputs
`ConcatOutputs` needs
- Restore the output of each time step back to the original input sequence order (to prevent the order of Infer phase from being upset)
- Concat each sequence as a regular mini-batch representation
## references
1. [Level of details](https://en.wikipedia.org/wiki/Level_of_detail)
../../v2/getstarted/quickstart_cn.rst
\ No newline at end of file
快速开始
========
快速安装
--------
PaddlePaddle支持使用pip快速安装,目前支持CentOS 6以上, Ubuntu 14.04以及MacOS 10.12,并安装有Python2.7。
执行下面的命令完成快速安装,版本为cpu_avx_openblas:
.. code-block:: bash
pip install paddlepaddle
如果需要安装支持GPU的版本(cuda7.5_cudnn5_avx_openblas),需要执行:
.. code-block:: bash
pip install paddlepaddle-gpu
更详细的安装和编译方法参考: :ref:`install_steps` 。
快速使用
--------
创建一个 housing.py 并粘贴此Python代码:
.. code-block:: python
import paddle.dataset.uci_housing as uci_housing
import paddle.fluid as fluid
with fluid.scope_guard(fluid.core.Scope()):
# initialize executor with cpu
exe = fluid.Executor(place=fluid.CPUPlace())
# load inference model
[inference_program, feed_target_names,fetch_targets] = \
fluid.io.load_inference_model(uci_housing.fluid_model(), exe)
# run inference
result = exe.run(inference_program,
feed={feed_target_names[0]: uci_housing.predict_reader()},
fetch_list=fetch_targets)
# print predicted price is $12,273.97
print 'Predicted price: ${:,.2f}'.format(result[0][0][0] * 1000)
执行 :code:`python housing.py` 瞧! 它应该打印出预测住房数据的清单。
../../v2/getstarted/quickstart_en.rst
\ No newline at end of file
Quick Start
============
Quick Install
-------------
You can use pip to install PaddlePaddle with a single command, supports
CentOS 6 above, Ubuntu 14.04 above or MacOS 10.12, with Python 2.7 installed.
Simply run the following command to install, the version is cpu_avx_openblas:
.. code-block:: bash
pip install paddlepaddle
If you need to install GPU version (cuda7.5_cudnn5_avx_openblas), run:
.. code-block:: bash
pip install paddlepaddle-gpu
For more details about installation and build: :ref:`install_steps` .
Quick Use
---------
Create a new file called housing.py, and paste this Python
code:
.. code-block:: python
import paddle.dataset.uci_housing as uci_housing
import paddle.fluid as fluid
with fluid.scope_guard(fluid.core.Scope()):
# initialize executor with cpu
exe = fluid.Executor(place=fluid.CPUPlace())
# load inference model
[inference_program, feed_target_names,fetch_targets] = \
fluid.io.load_inference_model(uci_housing.fluid_model(), exe)
# run inference
result = exe.run(inference_program,
feed={feed_target_names[0]: uci_housing.predict_reader()},
fetch_list=fetch_targets)
# print predicted price is $12,273.97
print 'Predicted price: ${:,.2f}'.format(result[0][0][0] * 1000)
Run :code:`python housing.py` and voila! It should print out a list of predictions
for the test housing data.
......@@ -66,7 +66,7 @@ void FetchOpHandle::RunImpl() {
auto &t = var->Get<framework::LoDTensor>();
if (platform::is_gpu_place(t.place())) {
#ifdef PADDLE_WITH_CUDA
TensorCopy(t, cpu, *dev_ctxes_[t.place()], &tensors_[i]);
TensorCopy(t, cpu, *dev_ctxes_[t.place()], &tensors_[i], true);
dev_ctxes_.at(t.place())->Wait();
#endif
} else {
......
......@@ -78,6 +78,33 @@ void MultiDevSSAGraphBuilder::CreateOpHandleIOs(SSAGraph *result,
}
}
bool MultiDevSSAGraphBuilder::IsDistTrainOp(const OpDesc &op,
OpDesc *send_op) const {
if (send_op == nullptr) {
return false;
}
auto checker = [&](const std::vector<std::string> opvars,
const std::vector<std::string> sendvars) -> bool {
bool is_dist_train_op = false;
for (auto &var : opvars) {
if (var.find(".block") != std::string::npos &&
std::find(sendvars.begin(), sendvars.end(), var) != sendvars.end()) {
is_dist_train_op = true;
break;
}
}
return is_dist_train_op;
};
if (op.Type() == "split") {
return checker(op.OutputArgumentNames(), send_op->InputArgumentNames());
} else if (op.Type() == "concat") {
return checker(op.InputArgumentNames(), send_op->OutputArgumentNames());
}
return false;
}
std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
const ProgramDesc &program) const {
auto graph = new SSAGraph();
......@@ -89,19 +116,30 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
std::unordered_map<std::string, std::vector<std::unique_ptr<VarHandle>>>>(
places_.size());
// Find "send" op first for split is in front of send.
OpDesc *send_op = nullptr;
for (auto *op : program.Block(0).AllOps()) {
if (op->Type() == "send") {
send_op = op;
break;
}
}
bool is_forwarding = true;
for (auto *op : program.Block(0).AllOps()) {
if (op->Type() == "send") {
// append send op if program is distributed trainer main program.
// always use the first device
CreateSendOp(&result, *op);
} else if (IsDistTrainOp(*op, send_op)) {
CreateComputationalOps(&result, *op, 1);
} else if (IsScaleLossOp(*op)) {
if (!skip_scale_loss_) {
CreateScaleLossGradOp(&result);
}
is_forwarding = false;
} else {
CreateComputationalOps(&result, *op);
CreateComputationalOps(&result, *op, places_.size());
if (!is_forwarding) {
// Currently, we assume that once gradient is generated, it can be
// broadcast, and each gradient is only broadcast once. But there are no
......@@ -199,8 +237,9 @@ void MultiDevSSAGraphBuilder::CreateScaleLossGradOp(SSAGraph *result) const {
}
void MultiDevSSAGraphBuilder::CreateComputationalOps(SSAGraph *result,
const OpDesc &op) const {
for (size_t scope_idx = 0; scope_idx < places_.size(); ++scope_idx) {
const OpDesc &op,
size_t num_places) const {
for (size_t scope_idx = 0; scope_idx < num_places; ++scope_idx) {
auto p = places_[scope_idx];
auto s = local_scopes_[scope_idx];
result->ops_.emplace_back(new ComputationOpHandle(op, s, p));
......
......@@ -65,7 +65,10 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder {
void CreateSendOp(SSAGraph *result, const OpDesc &op) const;
void CreateComputationalOps(SSAGraph *result, const OpDesc &op) const;
bool IsDistTrainOp(const OpDesc &op, OpDesc *send_op) const;
void CreateComputationalOps(SSAGraph *result, const OpDesc &op,
size_t num_places) const;
void CreateScaleLossGradOp(SSAGraph *result) const;
......
......@@ -34,7 +34,7 @@ std::once_flag p2p_init_flag;
using paddle::platform::DeviceContextPool;
void Init(std::vector<std::string> &argv) {
void Init(std::vector<std::string> argv) {
InitGflags(argv);
// init devices
std::vector<int> devices;
......@@ -46,7 +46,7 @@ void Init(std::vector<std::string> &argv) {
InitDevices(FLAGS_init_p2p, devices);
}
void InitGflags(std::vector<std::string> &argv) {
void InitGflags(std::vector<std::string> argv) {
std::call_once(gflags_init_flag, [&]() {
argv.push_back("dummy");
int argc = argv.size();
......@@ -108,7 +108,7 @@ void InitP2P(std::vector<int> devices) {
}
void InitDevices(bool init_p2p) {
/*Init all avaiable devices by default */
/*Init all available devices by default */
std::vector<platform::Place> places;
places.emplace_back(platform::CPUPlace());
......
......@@ -12,7 +12,9 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <mutex>
#include <mutex> // NOLINT
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
......@@ -20,9 +22,9 @@ limitations under the License. */
namespace paddle {
namespace framework {
void Init(std::vector<std::string> &argv);
void Init(std::vector<std::string> argv);
void InitGflags(std::vector<std::string> &argv);
void InitGflags(std::vector<std::string> argv);
void InitGLOG(const std::string &prog_name);
......
......@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#include <cctype>
#include <string>
namespace paddle {
namespace framework {
......@@ -67,5 +68,5 @@ inline std::ostream& operator<<(std::ostream& out, LibraryType l) {
return out;
}
} // namespace
} // framework
} // namespace framework
} // namespace paddle
......@@ -20,7 +20,7 @@ namespace paddle {
namespace framework {
void TensorCopy(const Tensor& src, const platform::Place& dst_place,
const platform::DeviceContext& ctx, Tensor* dst) {
const platform::DeviceContext& ctx, Tensor* dst, bool sync) {
VLOG(3) << "TensorCopy " << src.dims() << " from " << src.place() << " to "
<< dst_place;
src.check_memory_size();
......@@ -47,9 +47,11 @@ void TensorCopy(const Tensor& src, const platform::Place& dst_place,
PADDLE_ENFORCE(platform::is_gpu_place(ctx_place));
auto ctx_gpu_place = boost::get<platform::CUDAPlace>(ctx_place);
PADDLE_ENFORCE_EQ(src_gpu_place, ctx_gpu_place);
memory::Copy(
dst_cpu_place, dst_ptr, src_gpu_place, src_ptr, size,
reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
auto stream =
sync ? nullptr
: reinterpret_cast<const platform::CUDADeviceContext&>(ctx)
.stream();
memory::Copy(dst_cpu_place, dst_ptr, src_gpu_place, src_ptr, size, stream);
} else if (platform::is_cpu_place(src_place) &&
platform::is_gpu_place(dst_place)) {
auto src_cpu_place = boost::get<platform::CPUPlace>(src_place);
......@@ -58,18 +60,22 @@ void TensorCopy(const Tensor& src, const platform::Place& dst_place,
PADDLE_ENFORCE(platform::is_gpu_place(ctx_place));
auto ctx_gpu_place = boost::get<platform::CUDAPlace>(ctx_place);
PADDLE_ENFORCE_EQ(dst_gpu_place, ctx_gpu_place);
memory::Copy(
dst_gpu_place, dst_ptr, src_cpu_place, src_ptr, size,
reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
auto stream =
sync ? nullptr
: reinterpret_cast<const platform::CUDADeviceContext&>(ctx)
.stream();
memory::Copy(dst_gpu_place, dst_ptr, src_cpu_place, src_ptr, size, stream);
} else if (platform::is_gpu_place(src_place) &&
platform::is_gpu_place(dst_place)) {
auto src_gpu_place = boost::get<platform::CUDAPlace>(src_place);
auto dst_gpu_place = boost::get<platform::CUDAPlace>(dst_place);
auto ctx_place = ctx.GetPlace();
PADDLE_ENFORCE(platform::is_gpu_place(ctx_place));
memory::Copy(
dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size,
reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
auto stream =
sync ? nullptr
: reinterpret_cast<const platform::CUDADeviceContext&>(ctx)
.stream();
memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size, stream);
}
#endif
}
......
......@@ -24,7 +24,8 @@ namespace paddle {
namespace framework {
void TensorCopy(const Tensor& src, const platform::Place& dst_place,
const platform::DeviceContext& ctx, Tensor* dst);
const platform::DeviceContext& ctx, Tensor* dst,
bool sync = false);
void TensorCopy(const Tensor& src, const platform::Place& dst_place,
Tensor* dst);
......
......@@ -32,7 +32,11 @@ void Copy<platform::CPUPlace, platform::CUDAPlace>(
platform::CPUPlace dst_place, void* dst, platform::CUDAPlace src_place,
const void* src, size_t num, cudaStream_t stream) {
platform::SetDeviceId(src_place.device);
platform::GpuMemcpyAsync(dst, src, num, cudaMemcpyDeviceToHost, stream);
if (stream) {
platform::GpuMemcpyAsync(dst, src, num, cudaMemcpyDeviceToHost, stream);
} else {
platform::GpuMemcpySync(dst, src, num, cudaMemcpyDeviceToHost);
}
}
template <>
......@@ -40,7 +44,11 @@ void Copy<platform::CUDAPlace, platform::CPUPlace>(
platform::CUDAPlace dst_place, void* dst, platform::CPUPlace src_place,
const void* src, size_t num, cudaStream_t stream) {
platform::SetDeviceId(dst_place.device);
platform::GpuMemcpyAsync(dst, src, num, cudaMemcpyHostToDevice, stream);
if (stream) {
platform::GpuMemcpyAsync(dst, src, num, cudaMemcpyHostToDevice, stream);
} else {
platform::GpuMemcpySync(dst, src, num, cudaMemcpyHostToDevice);
}
}
template <>
......@@ -49,10 +57,19 @@ void Copy<platform::CUDAPlace, platform::CUDAPlace>(
const void* src, size_t num, cudaStream_t stream) {
if (dst_place == src_place) {
platform::SetDeviceId(src_place.device);
platform::GpuMemcpyAsync(dst, src, num, cudaMemcpyDeviceToDevice, stream);
if (stream) {
platform::GpuMemcpyAsync(dst, src, num, cudaMemcpyDeviceToDevice, stream);
} else {
platform::GpuMemcpySync(dst, src, num, cudaMemcpyDeviceToDevice);
}
} else {
platform::GpuMemcpyPeer(dst, dst_place.device, src, src_place.device, num,
stream);
if (stream) {
platform::GpuMemcpyPeerAsync(dst, dst_place.device, src, src_place.device,
num, stream);
} else {
platform::GpuMemcpyPeerSync(dst, dst_place.device, src, src_place.device,
num);
}
}
}
......@@ -83,7 +100,11 @@ void Copy<platform::CUDAPinnedPlace, platform::CUDAPlace>(
platform::CUDAPlace src_place, const void* src, size_t num,
cudaStream_t stream) {
platform::SetDeviceId(src_place.device);
platform::GpuMemcpyAsync(dst, src, num, cudaMemcpyDeviceToHost, stream);
if (stream) {
platform::GpuMemcpyAsync(dst, src, num, cudaMemcpyDeviceToHost, stream);
} else {
platform::GpuMemcpySync(dst, src, num, cudaMemcpyDeviceToHost);
}
}
template <>
......@@ -92,7 +113,11 @@ void Copy<platform::CUDAPlace, platform::CUDAPinnedPlace>(
platform::CUDAPinnedPlace src_place, const void* src, size_t num,
cudaStream_t stream) {
platform::SetDeviceId(dst_place.device);
platform::GpuMemcpyAsync(dst, src, num, cudaMemcpyHostToDevice, stream);
if (stream) {
platform::GpuMemcpyAsync(dst, src, num, cudaMemcpyHostToDevice, stream);
} else {
platform::GpuMemcpySync(dst, src, num, cudaMemcpyHostToDevice);
}
}
#endif
......
......@@ -356,8 +356,8 @@ __device__ T reduceSum(T val, int tid, int len) {
// I use Warp-Level Parallelism and assume the Warp size
// is 32 which may be different for different GPU,
// but most card's warp size is 32.
__shared__ T shm[32];
const int warpSize = 32;
__shared__ T shm[warpSize];
unsigned mask = 0u;
CREATE_SHFL_MASK(mask, tid < len);
......@@ -371,6 +371,7 @@ __device__ T reduceSum(T val, int tid, int len) {
if (tid % warpSize == 0) {
shm[tid / warpSize] = val;
}
__syncthreads();
CREATE_SHFL_MASK(mask, tid < warpSize);
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "mkldnn.hpp"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/mul_op.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
namespace paddle {
namespace operators {
using paddle::framework::Tensor;
using paddle::platform::MKLDNNDeviceContext;
template <typename Format = mkldnn::memory::format>
mkldnn::memory::desc type(const std::vector<int>& dims, Format&& f) {
return platform::MKLDNNMemDesc(dims, mkldnn::memory::data_type::f32, f);
}
template <typename T>
class MulMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
"It must use CPUPlace.");
auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
auto mkldnn_engine = dev_ctx.GetEngine();
auto input = ctx.Input<Tensor>("X");
auto weight = ctx.Input<Tensor>("Y");
PADDLE_ENFORCE(input->dims().size() & (2 | 4),
"Input must be with 2 or 4 dimensions, i.e. NC or NCHW");
PADDLE_ENFORCE(weight->dims().size() & (2 | 4),
"Weights must be with 2 or 4 dimensions, i.e. OI or OIHW");
std::vector<int> w_tz = paddle::framework::vectorize2int(weight->dims());
std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
auto src_md =
src_tz.size() != 2
? type(src_tz, mkldnn::memory::format::nchw)
: type({src_tz[0], src_tz[1]}, mkldnn::memory::format::nc);
auto dst_md = type({src_tz[0], w_tz[1]}, mkldnn::memory::format::nc);
auto weights_md =
src_tz.size() != 2
? type({w_tz[1], src_tz[1], src_tz[2], src_tz[3]},
mkldnn::memory::format::oihw)
: type({w_tz[1], src_tz[1]}, mkldnn::memory::format::oi);
auto output = ctx.Output<Tensor>("Out");
T* output_data = output->mutable_data<T>(ctx.GetPlace());
const std::string key = ctx.op().Output("Out");
const std::string key_fc_pd = key + "@mul_pd";
const T* input_data = input->data<T>();
const T* w_data = weight->data<T>();
auto dst_memory = mkldnn::memory({dst_md, mkldnn_engine}, output_data);
auto src_memory = mkldnn::memory({src_md, mkldnn_engine},
platform::to_void_cast(input_data));
auto weights_memory = mkldnn::memory({weights_md, mkldnn_engine},
platform::to_void_cast(w_data));
auto pd = platform::MKLDNNFwdPrimitiveDesc<mkldnn::inner_product_forward>(
mkldnn_engine, src_md, weights_md, dst_md);
dev_ctx.SetBlob(key_fc_pd, pd);
auto forward = mkldnn::inner_product_forward(*pd, src_memory,
weights_memory, dst_memory);
std::vector<mkldnn::primitive> pipeline = {forward};
mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
}
};
template <typename T>
class MulMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
public:
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
"It must use CPUPlace.");
auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
auto mkldnn_engine = dev_ctx.GetEngine();
const Tensor* input = ctx.Input<Tensor>("X");
const Tensor* w = ctx.Input<Tensor>("Y");
const Tensor* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
Tensor* w_grad = ctx.Output<Tensor>(framework::GradVarName("Y"));
const std::string key = ctx.op().Input("Out");
const std::string key_fc_pd = key + "@mul_pd";
const T* input_data = input->data<T>();
const T* w_data = w->data<T>();
const T* out_grad_data = out_grad->data<T>();
T* input_grad_data = nullptr;
T* w_grad_data = nullptr;
if (input_grad) {
input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
}
if (w_grad) {
w_grad_data = w_grad->mutable_data<T>(ctx.GetPlace());
}
std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
std::vector<int> w_tz = paddle::framework::vectorize2int(w->dims());
auto src_md =
src_tz.size() != 2
? type(src_tz, mkldnn::memory::format::nchw)
: type({src_tz[0], src_tz[1]}, mkldnn::memory::format::nc);
auto dst_md = type({src_tz[0], w_tz[1]}, mkldnn::memory::format::nc);
auto weights_md =
src_tz.size() != 2
? type({w_tz[1], src_tz[1], src_tz[2], src_tz[3]},
mkldnn::memory::format::oihw)
: type({w_tz[1], src_tz[1]}, mkldnn::memory::format::oi);
auto src_memory = mkldnn::memory({src_md, mkldnn_engine},
platform::to_void_cast(input_data));
auto dst_memory = mkldnn::memory({dst_md, mkldnn_engine},
platform::to_void_cast(out_grad_data));
auto weight_memory = mkldnn::memory({weights_md, mkldnn_engine},
platform::to_void_cast(w_data));
auto pd =
std::static_pointer_cast<mkldnn::inner_product_forward::primitive_desc>(
dev_ctx.GetBlob(key_fc_pd));
PADDLE_ENFORCE(pd != nullptr, "Fail to find pd in device context");
if (w_grad) {
auto weights_grad_memory = mkldnn::memory(
{weights_md, mkldnn_engine}, platform::to_void_cast(w_grad_data));
auto bwd_weight_pd = platform::MKLDNNBwdPrimitiveDesc<
mkldnn::inner_product_backward_weights>(mkldnn_engine, *pd, src_md,
weights_md, dst_md);
auto bwd_weights_prim = mkldnn::inner_product_backward_weights(
bwd_weight_pd, src_memory, dst_memory, weights_grad_memory);
std::vector<mkldnn::primitive> pipeline{bwd_weights_prim};
mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
}
if (input_grad) {
auto src_grad_memory = mkldnn::memory(
{src_md, mkldnn_engine}, platform::to_void_cast(input_grad_data));
auto bwd_data_pd =
platform::MKLDNNBwdPrimitiveDesc<mkldnn::inner_product_backward_data>(
mkldnn_engine, *pd, src_md, weights_md, dst_md);
auto bwd_data_prim = mkldnn::inner_product_backward_data(
bwd_data_pd, dst_memory, weight_memory, src_grad_memory);
std::vector<mkldnn::primitive> pipeline{bwd_data_prim};
mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
}
}
};
} // namespace operators
} // namespace paddle
REGISTER_OP_KERNEL(mul, MKLDNN, ::paddle::platform::CPUPlace,
paddle::operators::MulMKLDNNOpKernel<float>);
REGISTER_OP_KERNEL(mul_grad, MKLDNN, ::paddle::platform::CPUPlace,
paddle::operators::MulMKLDNNGradOpKernel<float>);
......@@ -13,8 +13,13 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/mul_op.h"
#include <string>
#include <vector>
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
namespace paddle {
namespace operators {
......@@ -71,6 +76,22 @@ class MulOp : public framework::OperatorWithKernel {
ctx->SetOutputDim("Out", framework::make_ddim(output_dims));
ctx->ShareLoD("X", /*->*/ "Out");
}
private:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
framework::LibraryType library{framework::LibraryType::kPlain};
#ifdef PADDLE_WITH_MKLDNN
if (library == framework::LibraryType::kPlain &&
platform::CanMKLDNNBeUsed(ctx)) {
library = framework::LibraryType::kMKLDNN;
}
#endif
framework::DataLayout layout{framework::DataLayout::kAnyLayout};
return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace(),
layout, library);
}
};
class MulOpMaker : public framework::OpProtoAndCheckerMaker {
......@@ -100,6 +121,9 @@ class MulOpMaker : public framework::OpProtoAndCheckerMaker {
)DOC")
.SetDefault(1)
.EqualGreaterThan(1);
AddAttr<bool>("use_mkldnn",
"(bool, default false) Only used in mkldnn kernel")
.SetDefault(false);
AddAttr<int>(
"y_num_col_dims",
R"DOC((int, default 1), The mul_op can take tensors with more than two,
......@@ -154,6 +178,22 @@ class MulGradOp : public framework::OperatorWithKernel {
ctx->SetOutputDim(y_grad_name, y_dims);
}
}
private:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
framework::LibraryType library{framework::LibraryType::kPlain};
#ifdef PADDLE_WITH_MKLDNN
if (library == framework::LibraryType::kPlain &&
platform::CanMKLDNNBeUsed(ctx)) {
library = framework::LibraryType::kMKLDNN;
}
#endif
framework::DataLayout layout{framework::DataLayout::kAnyLayout};
return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace(),
layout, library);
}
};
} // namespace operators
......
......@@ -180,7 +180,8 @@ void DoubleBufferReader::PrefetchThreadFunc() {
auto* gpu_ctx = ctxs_[cached_tensor_id].get();
gpu_batch.resize(cpu_batch.size());
for (size_t i = 0; i < cpu_batch.size(); ++i) {
framework::TensorCopy(cpu_batch[i], place_, *gpu_ctx, &gpu_batch[i]);
framework::TensorCopy(cpu_batch[i], place_, *gpu_ctx, &gpu_batch[i],
true);
gpu_batch[i].set_lod(cpu_batch[i].lod());
}
}
......
......@@ -127,11 +127,24 @@ void GpuMemcpyAsync(void *dst, const void *src, size_t count,
"cudaMemcpyAsync failed in paddle::platform::GpuMemcpyAsync");
}
void GpuMemcpyPeer(void *dst, int dst_device, const void *src, int src_device,
size_t count, cudaStream_t stream) {
void GpuMemcpySync(void *dst, const void *src, size_t count,
enum cudaMemcpyKind kind) {
PADDLE_ENFORCE(cudaMemcpy(dst, src, count, kind),
"cudaMemcpy failed in paddle::platform::GpuMemcpySync");
}
void GpuMemcpyPeerAsync(void *dst, int dst_device, const void *src,
int src_device, size_t count, cudaStream_t stream) {
PADDLE_ENFORCE(
cudaMemcpyPeerAsync(dst, dst_device, src, src_device, count, stream),
"cudaMemcpyPeerAsync failed in paddle::platform::GpuMemcpyPeer");
"cudaMemcpyPeerAsync failed in paddle::platform::GpuMemcpyPeerAsync");
}
void GpuMemcpyPeerSync(void *dst, int dst_device, const void *src,
int src_device, size_t count) {
PADDLE_ENFORCE(
cudaMemcpyPeer(dst, dst_device, src, src_device, count),
"cudaMemcpyPeer failed in paddle::platform::GpuMemcpyPeerSync");
}
void GpuMemsetAsync(void *dst, int value, size_t count, cudaStream_t stream) {
......
......@@ -57,9 +57,17 @@ size_t GpuMaxChunkSize();
void GpuMemcpyAsync(void *dst, const void *src, size_t count,
enum cudaMemcpyKind kind, cudaStream_t stream);
//! Copy memory from one device to another device.
void GpuMemcpyPeer(void *dst, int dst_device, const void *src, int src_device,
size_t count, cudaStream_t stream);
//! Copy memory from address src to dst synchronously.
void GpuMemcpySync(void *dst, const void *src, size_t count,
enum cudaMemcpyKind kind);
//! Copy memory from one device to another device asynchronously.
void GpuMemcpyPeerAsync(void *dst, int dst_device, const void *src,
int src_device, size_t count, cudaStream_t stream);
//! Copy memory from one device to another device synchronously.
void GpuMemcpyPeerSync(void *dst, int dst_device, const void *src,
int src_device, size_t count);
//! Set memory dst with value count size asynchronously
void GpuMemsetAsync(void *dst, int value, size_t count, cudaStream_t stream);
......
......@@ -13,9 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <mkldnn.h>
#include <vector>
#include "mkldnn/include/mkldnn.hpp"
#include "paddle/fluid/framework/operator.h"
namespace paddle {
......@@ -34,6 +33,32 @@ typedef std::unique_ptr<MKLDNNMemory> MKLDNNMemoryPtr;
typedef std::unique_ptr<MKLDNNPrimitive> MKLDNNPrimitivePtr;
typedef std::unique_ptr<MKLDNNPrimitiveDesc> MKLDNNPrimitiveDescPtr;
template <typename Type>
void* to_void_cast(const Type* t) {
return static_cast<void*>(const_cast<Type*>(t));
}
template <class Type>
using tf_desc = typename Type::desc;
template <class Type>
using tf_pd = typename Type::primitive_desc;
template <typename Type, typename Engine, typename... Args>
std::shared_ptr<tf_pd<Type>> MKLDNNFwdPrimitiveDesc(const Engine& e,
Args&&... args) {
auto desc = tf_desc<Type>(mkldnn::prop_kind::forward, (args)...);
auto pd = new tf_pd<Type>(desc, e);
return std::shared_ptr<tf_pd<Type>>(pd);
}
template <typename Type, typename Engine, typename Primitive, typename... Args>
tf_pd<Type> MKLDNNBwdPrimitiveDesc(const Engine& e, const Primitive& p,
Args&&... args) {
auto desc = tf_desc<Type>(args...);
return tf_pd<Type>(desc, e, p);
}
inline mkldnn::memory::desc MKLDNNMemDesc(const std::vector<int>& dims,
mkldnn::memory::data_type data_type,
mkldnn::memory::format format) {
......
......@@ -390,9 +390,7 @@ private:
if (this->loadThread_) { // wait poolActualSize < poolSize;
std::unique_lock<std::mutex> l(mtx_);
pushCV_.wait(l, [this, additionalBatchSize] {
return this->poolActualSize_ < poolSize_;
});
pushCV_.wait(l, [this] { return this->poolActualSize_ < poolSize_; });
}
{
......
......@@ -52,7 +52,7 @@ MultiGradientMachine::MultiGradientMachine(const ModelConfig& config,
} else {
numDevices_ = 0;
}
ParamInitCallback mainParamInitCb = [this](int paramId, Parameter* para) {
ParamInitCallback mainParamInitCb = [](int paramId, Parameter* para) {
// only create buf for CPU parameters
// GPU parameters will be created in each thread
if (para->useGpu()) return;
......
......@@ -72,7 +72,7 @@ void RecurrentLayerGroup::initSubNetwork(
setNeedGradient(true);
network_.reset(new RecurrentGradientMachine(config_.name(), rootNetwork));
ParamInitCallback cb = [this, rootNetwork](int paramId, Parameter* para) {
ParamInitCallback cb = [rootNetwork](int paramId, Parameter* para) {
para->enableSharedType(
PARAMETER_VALUE,
rootNetwork->getParameters()[paramId]->getBuf(PARAMETER_VALUE),
......
......@@ -325,12 +325,12 @@ void Argument::concat(const std::vector<Argument>& args,
->copyFrom(*src->subVec(srcStartRow, size), stream);
};
auto copyStrs = [batchSize, stream](SVectorPtr& dst,
const SVectorPtr& src,
int desStartRow,
int srcStartRow,
int size,
bool useGpu) {
auto copyStrs = [batchSize](SVectorPtr& dst,
const SVectorPtr& src,
int desStartRow,
int srcStartRow,
int size,
bool useGpu) {
if (!src) {
dst.reset();
return;
......@@ -413,7 +413,7 @@ void Argument::concat(const std::vector<Argument>& args,
dst->subVec(startRow, src->getSize())->copyFrom(*src, stream);
};
auto copyStrs = [batchSize, stream](
auto copyStrs = [batchSize](
SVectorPtr& dst, const SVectorPtr& src, int startRow, bool useGpu) {
if (!src) {
dst.reset();
......
......@@ -81,9 +81,9 @@ ParameterOptimizer::TraverseCallback AverageOptimizer::needSpecialTraversal(
if (numUpdates_ % kMaxNumAccumulates == 0) {
// Move the sum to a different buffer to avoid loss of precision
// due to too many sums.
callbacks.emplace_back([this](const VectorPtr vecs[],
const ParameterConfig& config,
size_t sparseId) {
callbacks.emplace_back([](const VectorPtr vecs[],
const ParameterConfig& config,
size_t sparseId) {
vecs[PARAMETER_SUM2]->add(*vecs[PARAMETER_SUM1]);
vecs[PARAMETER_SUM1]->zeroMem();
});
......@@ -94,9 +94,9 @@ ParameterOptimizer::TraverseCallback AverageOptimizer::needSpecialTraversal(
if (auto callback = this->startCatchUpWith()) {
callbacks.emplace_back(callback);
}
callbacks.emplace_back([this](const VectorPtr vecs[],
const ParameterConfig& config,
size_t sparseId) {
callbacks.emplace_back([](const VectorPtr vecs[],
const ParameterConfig& config,
size_t sparseId) {
vecs[PARAMETER_SUM3]->add(*vecs[PARAMETER_SUM1], *vecs[PARAMETER_SUM2]);
vecs[PARAMETER_SUM1]->zeroMem();
vecs[PARAMETER_SUM2]->zeroMem();
......
......@@ -145,9 +145,9 @@ AdagradParameterOptimizer::needSpecialTraversal(
if (numUpdates_ % kMaxNumAccumulates == 0) {
// Move the sum to a different buffer to avoid loss of precision
// due to too many sums.
return [this](const VectorPtr vecs[],
const ParameterConfig& config,
size_t sparseId) {
return [](const VectorPtr vecs[],
const ParameterConfig& config,
size_t sparseId) {
vecs[PARAMETER_GRADIENT_SQURESUM]->add(
*vecs[PARAMETER_GRADIENT_SQURESUM1]);
vecs[PARAMETER_GRADIENT_SQURESUM1]->zeroMem();
......
......@@ -19,7 +19,11 @@ https://archive.ics.uci.edu/ml/machine-learning-databases/housing/ and
parse training set and test set into paddle reader creators.
"""
import os
import numpy as np
import tempfile
import tarfile
import os
import paddle.dataset.common
......@@ -34,8 +38,9 @@ feature_names = [
UCI_TRAIN_DATA = None
UCI_TEST_DATA = None
URL_MODEL = 'https://github.com/PaddlePaddle/book/raw/develop/01.fit_a_line/fit_a_line.tar'
MD5_MODEL = '52fc3da8ef3937822fcdd87ee05c0c9b'
FLUID_URL_MODEL = 'https://github.com/PaddlePaddle/book/raw/develop/01.fit_a_line/fluid/fit_a_line.fluid.tar'
FLUID_MD5_MODEL = '6e6dd637ccd5993961f68bfbde46090b'
def feature_range(maximums, minimums):
......@@ -113,6 +118,29 @@ def test():
return reader
def fluid_model():
parameter_tar = paddle.dataset.common.download(
FLUID_URL_MODEL, 'uci_housing', FLUID_MD5_MODEL, 'fit_a_line.fluid.tar')
tar = tarfile.TarFile(parameter_tar, mode='r')
dirpath = tempfile.mkdtemp()
tar.extractall(path=dirpath)
return dirpath
def predict_reader():
"""
It returns just one tuple data to do inference.
:return: one tuple data
:rtype: tuple
"""
global UCI_TEST_DATA
load_data(paddle.dataset.common.download(URL, 'uci_housing', MD5))
return (UCI_TEST_DATA[0][:-1], )
def fetch():
paddle.dataset.common.download(URL, 'uci_housing', MD5)
......
......@@ -159,67 +159,37 @@ def fc(input,
dtype = helper.input_dtype()
mul_results = []
if use_mkldnn:
tmp = helper.create_tmp_variable(dtype)
input_shape = input.shape
for input_var, param_attr in helper.iter_inputs_and_params():
input_shape = input_var.shape
param_shape = [
reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
] + [size]
w = helper.create_parameter(
attr=helper.param_attr,
shape=param_shape,
dtype=dtype,
is_bias=False)
if bias_attr is None or bias_attr is False:
bias_attr = False
else:
bias_attr = True
attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
tmp = helper.create_tmp_variable(dtype)
helper.append_op(
type="fc",
inputs={"Input": input,
"W": w},
type="mul",
inputs={"X": input_var,
"Y": w},
outputs={"Out": tmp},
attrs={
"use_mkldnn": use_mkldnn,
"is_test": is_test,
"bias_attr": bias_attr
"x_num_col_dims": num_flatten_dims,
"y_num_col_dims": 1,
"use_mkldnn": use_mkldnn
})
return helper.append_activation(tmp)
mul_results.append(tmp)
if len(mul_results) == 1:
pre_bias = mul_results[0]
else:
for input_var, param_attr in helper.iter_inputs_and_params():
input_shape = input_var.shape
param_shape = [
reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
] + [size]
w = helper.create_parameter(
attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
tmp = helper.create_tmp_variable(dtype)
helper.append_op(
type="mul",
inputs={"X": input_var,
"Y": w},
outputs={"Out": tmp},
attrs={
"x_num_col_dims": num_flatten_dims,
"y_num_col_dims": 1,
})
mul_results.append(tmp)
if len(mul_results) == 1:
pre_bias = mul_results[0]
else:
pre_bias = helper.create_tmp_variable(dtype)
helper.append_op(
type="sum",
inputs={"X": mul_results},
outputs={"Out": pre_bias})
# add bias
pre_activation = helper.append_bias_op(
pre_bias, dim_start=num_flatten_dims)
# add activation
return helper.append_activation(pre_activation)
pre_bias = helper.create_tmp_variable(dtype)
helper.append_op(
type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias})
# add bias
pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
# add activation
return helper.append_activation(pre_activation)
def embedding(input,
......@@ -3733,8 +3703,8 @@ def label_smooth(label,
name=None):
"""
Label smoothing is a mechanism to regularize the classifier layer and is
called label-smoothing regularization (LSR).
called label-smoothing regularization (LSR).
Label smoothing is proposed to encourage the model to be less confident,
since optimizing the log-likelihood of the correct label directly may
cause overfitting and reduce the ability of the model to adapt. Label
......@@ -3758,10 +3728,10 @@ def label_smooth(label,
prior_dist(Variable): The prior distribution to be used to smooth
labels. If not provided, an uniform distribution
is used. The shape of :attr:`prior_dist` should
be :math:`(1, class\_num)`.
be :math:`(1, class\_num)`.
epsilon(float): The weight used to mix up the original ground-truth
distribution and the fixed distribution.
dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
float_64, int etc.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle.fluid.core as core
import paddle.fluid as fluid
class TestElementWiseAddOp(unittest.TestCase):
def __assert_close(self, tensor, np_array, msg, atol=1e-4):
self.assertTrue(np.allclose(np.array(tensor), np_array, atol=atol), msg)
def check_forward_backward(self):
def test_with_place(place):
out_grad = np.random.random_sample(self.x.shape).astype(np.float32)
x_grad = out_grad
sum_axis = range(0, len(self.x.shape))
del sum_axis[self.axis]
y_grad = np.sum(out_grad, axis=tuple(sum_axis))
var_dict = locals()
var_dict['y'] = self.y
var_dict['x'] = self.x
var_dict['out'] = self.out
var_dict['y@GRAD'] = y_grad
var_dict['x@GRAD'] = x_grad
var_dict['out@GRAD'] = out_grad
var_names = ['x', 'y', 'out', 'y@GRAD', 'x@GRAD', 'out@GRAD']
ground_truth = {name: var_dict[name] for name in var_names}
program = fluid.Program()
with fluid.program_guard(program):
block = program.global_block()
for name in ground_truth:
block.create_var(
name=name,
dtype='float32',
shape=ground_truth[name].shape)
elementwise_add_op = block.append_op(
type="elementwise_add",
inputs={
"X": block.var('x'),
"Y": block.var('y'),
},
outputs={"Out": block.var('out'), },
attrs={"axis": self.axis, })
# generate backward op_desc
grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
elementwise_add_op.desc, set(), [])
grad_op_desc = grad_op_desc_list[0]
new_op_desc = block.desc.append_op()
new_op_desc.copy_from(grad_op_desc)
for var_name in grad_op_desc.output_arg_names():
block.desc.var(var_name.encode("ascii"))
grad_op_desc.infer_var_type(block.desc)
grad_op_desc.infer_shape(block.desc)
for arg in grad_op_desc.output_arg_names():
grad_var = block.desc.find_var(arg.encode("ascii"))
grad_var.set_dtype(core.VarDesc.VarType.FP32)
exe = fluid.Executor(place)
out = exe.run(program,
feed={
name: var_dict[name]
for name in ['x', 'y', 'out@GRAD']
},
fetch_list=['x@GRAD', 'y@GRAD'])
self.__assert_close(x_grad, out[0], "x@GRAD")
self.__assert_close(y_grad, out[1], "y@GRAD", atol=1.4)
places = [core.CPUPlace()]
if core.is_compiled_with_cuda() and core.op_support_gpu(
"elementwise_add"):
places.append(core.CUDAPlace(0))
for place in places:
test_with_place(place)
def test_check_forward_backward_with_scale_and_bias(self):
np.random.seed(123)
self.x = np.random.random((4, 32, 220, 220)).astype(np.float32)
self.y = np.random.random((32)).astype(np.float32)
self.out = self.x + self.y.reshape(1, 32, 1, 1)
self.axis = 1
self.check_forward_backward()
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from test_mul_op import TestMulOp, TestMulOp2, TestFP16MulOp1, TestFP16MulOp2
class TestMKLDNNMulOp(TestMulOp):
def init_op_test(self):
super(TestMKLDNNMulOp, self).setUp()
self.attrs = {"use_mkldnn": True}
class TestMKLDNNMulOp2(TestMulOp2):
def init_op_test(self):
super(TestMKLDNNMulOp2, self).setUp()
self.attrs = {"use_mkldnn": True}
class TestMKLDNNFP16MulOp1(TestFP16MulOp1):
def init_op_test(self):
super(TestMKLDNNFP16MulOp1, self).setUp()
self.attrs = {"use_mkldnn": True}
class TestMKLDNNFP16MulOp2(TestFP16MulOp2):
def init_op_test(self):
super(TestMKLDNNFP16MulOp2, self).setUp()
self.attrs = {"use_mkldnn": True}
if __name__ == "__main__":
unittest.main()
......@@ -21,10 +21,12 @@ from op_test import OpTest
class TestMulOp(OpTest):
def setUp(self):
self.op_type = "mul"
self.use_mkldnn = False
self.inputs = {
'X': np.random.random((32, 84)).astype("float32"),
'Y': np.random.random((84, 100)).astype("float32")
}
self.attrs = {'use_mkldnn': self.use_mkldnn}
self.outputs = {'Out': np.dot(self.inputs['X'], self.inputs['Y'])}
def test_check_output(self):
......@@ -45,11 +47,16 @@ class TestMulOp(OpTest):
class TestMulOp2(OpTest):
def setUp(self):
self.op_type = "mul"
self.use_mkldnn = False
self.inputs = {
'X': np.random.random((15, 4, 12, 10)).astype("float32"),
'Y': np.random.random((4, 30, 8, 2, 9)).astype("float32")
}
self.attrs = {'x_num_col_dims': 2, 'y_num_col_dims': 2}
self.attrs = {
'x_num_col_dims': 2,
'y_num_col_dims': 2,
'use_mkldnn': self.use_mkldnn
}
result = np.dot(self.inputs['X'].reshape(15 * 4, 12 * 10),
self.inputs['Y'].reshape(4 * 30, 8 * 2 * 9))
result = result.reshape(15, 4, 8, 2, 9)
......@@ -73,9 +80,11 @@ class TestMulOp2(OpTest):
class TestFP16MulOp1(OpTest):
def setUp(self):
self.op_type = "mul"
self.use_mkldnn = False
x = np.random.random((32, 84)).astype("float16")
y = np.random.random((84, 100)).astype("float16")
self.inputs = {'X': x.view(np.uint16), 'Y': y.view(np.uint16)}
self.attrs = {'use_mkldnn': self.use_mkldnn}
self.outputs = {'Out': np.dot(x, y)}
def test_check_output(self):
......@@ -88,12 +97,14 @@ class TestFP16MulOp1(OpTest):
class TestFP16MulOp2(OpTest):
def setUp(self):
self.op_type = "mul"
self.use_mkldnn = False
x = np.random.random((15, 4, 12, 10)).astype("float16")
y = np.random.random((4, 30, 8, 2, 9)).astype("float16")
self.inputs = {'X': x.view(np.uint16), 'Y': y.view(np.uint16)}
self.attrs = {
'x_num_col_dims': 2,
'y_num_col_dims': 2,
'use_mkldnn': self.use_mkldnn
}
result = np.dot(
x.reshape(15 * 4, 12 * 10), y.reshape(4 * 30, 8 * 2 * 9))
......
......@@ -62,7 +62,8 @@ class TestOperator(unittest.TestCase):
self.assertEqual(mul_op.output_names, ["Out"])
self.assertEqual(mul_op.output("Out"), ["mul.out"])
self.assertEqual(
set(mul_op.attr_names), set(["x_num_col_dims", "y_num_col_dims"]))
set(mul_op.attr_names),
set(["x_num_col_dims", "y_num_col_dims", "use_mkldnn"]))
self.assertEqual(mul_op.has_attr("x_num_col_dims"), True)
self.assertEqual(mul_op.attr_type("x_num_col_dims"), core.AttrType.INT)
self.assertEqual(mul_op.attr("x_num_col_dims"), 1)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册