Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
f28f2e0a
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2305
Star
20932
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f28f2e0a
编写于
11月 17, 2016
作者:
L
liaogang
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/baidu/Paddle
into profiler
上级
2c84c1ec
d0a908d5
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
178 addition
and
26 deletion
+178
-26
demo/quick_start/preprocess.sh
demo/quick_start/preprocess.sh
+1
-1
paddle/api/Matrix.cpp
paddle/api/Matrix.cpp
+14
-0
paddle/api/Paddle.swig
paddle/api/Paddle.swig
+15
-1
paddle/api/PaddleAPI.h
paddle/api/PaddleAPI.h
+38
-9
paddle/api/Util.cpp
paddle/api/Util.cpp
+4
-0
paddle/api/Vector.cpp
paddle/api/Vector.cpp
+43
-2
paddle/api/test/testMatrix.py
paddle/api/test/testMatrix.py
+15
-3
paddle/api/test/testVector.py
paddle/api/test/testVector.py
+48
-10
未找到文件。
demo/quick_start/preprocess.sh
浏览文件 @
f28f2e0a
...
...
@@ -23,7 +23,7 @@ set -e
export
LC_ALL
=
C
UNAME_STR
=
`
uname
`
if
[
[
${
UNAME_STR
}
==
'Linux'
]
]
;
then
if
[
${
UNAME_STR
}
==
'Linux'
]
;
then
SHUF_PROG
=
'shuf'
else
SHUF_PROG
=
'gshuf'
...
...
paddle/api/Matrix.cpp
浏览文件 @
f28f2e0a
...
...
@@ -52,6 +52,20 @@ Matrix* Matrix::createDense(const std::vector<float>& data, size_t height,
return
m
;
}
Matrix
*
Matrix
::
createDenseFromNumpy
(
float
*
data
,
int
dim1
,
int
dim2
,
bool
copy
,
bool
useGpu
)
throw
(
UnsupportError
)
{
if
(
useGpu
)
{
/// Gpu mode only supports copy=True
if
(
!
copy
)
{
throw
UnsupportError
(
"Gpu mode only supports copy=True"
);
}
return
Matrix
::
createGpuDenseFromNumpy
(
data
,
dim1
,
dim2
);
}
else
{
return
Matrix
::
createCpuDenseFromNumpy
(
data
,
dim1
,
dim2
,
copy
);
}
}
Matrix
*
Matrix
::
createCpuDenseFromNumpy
(
float
*
data
,
int
dim1
,
int
dim2
,
bool
copy
)
{
auto
m
=
new
Matrix
();
...
...
paddle/api/Paddle.swig
浏览文件 @
f28f2e0a
...
...
@@ -4,6 +4,13 @@
#define SWIG_FILE_WITH_INIT
#include "api/PaddleAPI.h"
%}
%include "exception.i"
%typemap(throws) UnsupportError %{
SWIG_exception(SWIG_RuntimeError, $1.what());
SWIG_fail;
%}
%include "std_vector.i"
%include "std_pair.i"
#ifdef SWIGPYTHON
...
...
@@ -133,14 +140,21 @@ namespace std {
%newobject Matrix::createZero;
%newobject Matrix::createSparse;
%newobject Matrix::createDense;
%newobject Matrix::createDenseFromNumpy;
%newobject Matrix::createCpuDenseFromNumpy;
%newobject Matrix::createGpuDenseFromNumpy;
%newobject Vector::createZero;
%newobject Vector::create;
%newobject Vector::createVectorFromNumpy;
%newobject Vector::createCpuVectorFromNumpy;
%newobject Vector::createGpuVectorFromNumpy;
%newobject IVector::createZero;
%newobject IVector::create;
%newobject IVector::createVectorFromNumpy;
%newobject IVector::createCpuVectorFromNumpy;
%newobject IVector::createGpuVectorFromNumpy;
%newobject Trainer::createByCommandLine;
%newobject Trainer::get
Network
Output;
%newobject Trainer::get
Forward
Output;
%newobject Trainer::getLayerOutput;
%newobject Arguments::getSlotValue;
%newobject Arguments::getSlotIds;
...
...
paddle/api/PaddleAPI.h
浏览文件 @
f28f2e0a
...
...
@@ -18,6 +18,7 @@ limitations under the License. */
#include <stddef.h>
#include <stdint.h>
#include <string>
#include <stdexcept>
#include <vector>
#include "paddle/utils/GlobalConstants.h"
#include "paddle/utils/TypeDefs.h"
...
...
@@ -42,6 +43,12 @@ using namespace paddle::enumeration_wrapper; // NOLINT
*/
void
initPaddle
(
int
argc
,
char
**
argv
);
/// Return FLAGS_use_gpu
bool
isUsingGpu
();
/// Set the Flags_use_gpu to the given parameter
void
setUseGpu
(
bool
useGpu
);
/// Return true if this py_paddle is compiled in GPU Version
bool
isGpuVersion
();
...
...
@@ -52,7 +59,11 @@ class IOError {};
class
RangeError
{};
/// Not support Error, such as access GPU memory directly, etc.
class
UnsupportError
{};
class
UnsupportError
:
public
std
::
runtime_error
{
public:
UnsupportError
()
:
std
::
runtime_error
(
" "
)
{};
UnsupportError
(
const
std
::
string
&
message
)
:
std
::
runtime_error
(
message
)
{};
};
/// This type will map to python's list of float.
struct
FloatArray
{
...
...
@@ -101,7 +112,8 @@ public:
/**
* Create A Matrix with height,width, which is filled by zero.
*/
static
Matrix
*
createZero
(
size_t
height
,
size_t
width
,
bool
useGpu
=
false
);
static
Matrix
*
createZero
(
size_t
height
,
size_t
width
,
bool
useGpu
=
isUsingGpu
());
/**
* Create Sparse Matrix.
...
...
@@ -114,7 +126,7 @@ public:
*/
static
Matrix
*
createSparse
(
size_t
height
,
size_t
width
,
size_t
nnz
,
bool
isNonVal
=
true
,
bool
trans
=
false
,
bool
useGpu
=
false
);
bool
useGpu
=
isUsingGpu
()
);
/**
* Create Dense Matrix.
...
...
@@ -123,7 +135,12 @@ public:
* @note the value will be copy into a new matrix.
*/
static
Matrix
*
createDense
(
const
std
::
vector
<
float
>&
data
,
size_t
height
,
size_t
width
,
bool
useGpu
=
false
);
size_t
width
,
bool
useGpu
=
isUsingGpu
());
static
Matrix
*
createDenseFromNumpy
(
float
*
data
,
int
dim1
,
int
dim2
,
bool
copy
=
true
,
bool
useGpu
=
isUsingGpu
())
throw
(
UnsupportError
);
/**
* Create Cpu Dense Matrix from numpy matrix, dtype=float32
...
...
@@ -221,15 +238,19 @@ public:
~
Vector
();
/// Create Vector filled with zero.
static
Vector
*
createZero
(
size_t
sz
,
bool
useGpu
=
false
);
static
Vector
*
createZero
(
size_t
sz
,
bool
useGpu
=
isUsingGpu
()
);
/**
* Create Vector from list of float.
*
* It will create a new vector, and copy data into it.
*/
static
Vector
*
create
(
const
std
::
vector
<
float
>&
data
,
bool
useGpu
=
false
);
static
Vector
*
create
(
const
std
::
vector
<
float
>&
data
,
bool
useGpu
=
isUsingGpu
());
static
Vector
*
createVectorFromNumpy
(
float
*
data
,
int
dim
,
bool
copy
=
true
,
bool
useGpu
=
isUsingGpu
())
throw
(
UnsupportError
);
/**
* Create Cpu Vector from numpy array, which dtype=float32
*
...
...
@@ -259,6 +280,9 @@ public:
/// Return is GPU vector or not.
bool
isGpu
()
const
;
/// Return a list of float, the memory is alloced and copied.
FloatArray
getData
()
const
;
/// __len__ in python
size_t
getSize
()
const
;
...
...
@@ -279,13 +303,18 @@ class IVector {
public:
/// Create IVector filled with zero
static
IVector
*
createZero
(
size_t
sz
,
bool
useGpu
=
false
);
static
IVector
*
createZero
(
size_t
sz
,
bool
useGpu
=
isUsingGpu
()
);
/**
* Create IVector from list of int.
* It will create a new vector, and copy data into it.
*/
static
IVector
*
create
(
const
std
::
vector
<
int
>&
data
,
bool
useGpu
=
false
);
static
IVector
*
create
(
const
std
::
vector
<
int
>&
data
,
bool
useGpu
=
isUsingGpu
());
static
IVector
*
createVectorFromNumpy
(
int
*
data
,
int
dim
,
bool
copy
=
true
,
bool
useGpu
=
isUsingGpu
())
throw
(
UnsupportError
);
/**
* Create Cpu IVector from numpy array, which dtype=int32
...
...
@@ -297,7 +326,7 @@ public:
/**
* Create Gpu IVector from numpy array, which dtype=int32
*/
static
IVector
*
createGpuVectorFromNumy
(
int
*
data
,
int
dim
);
static
IVector
*
createGpuVectorFromNum
p
y
(
int
*
data
,
int
dim
);
/// Cast to numpy array inplace.
void
toNumpyArrayInplace
(
int
**
view_data
,
int
*
dim1
)
throw
(
UnsupportError
);
...
...
paddle/api/Util.cpp
浏览文件 @
f28f2e0a
...
...
@@ -41,6 +41,10 @@ IntWithFloatArray::IntWithFloatArray(const float* v, const int* i, size_t l,
bool
f
)
:
valBuf
(
v
),
idxBuf
(
i
),
length
(
l
),
needFree
(
f
)
{}
bool
isUsingGpu
()
{
return
FLAGS_use_gpu
;}
void
setUseGpu
(
bool
useGpu
)
{
FLAGS_use_gpu
=
useGpu
;}
bool
isGpuVersion
()
{
#ifdef PADDLE_ONLY_CPU
return
false
;
...
...
paddle/api/Vector.cpp
浏览文件 @
f28f2e0a
...
...
@@ -39,6 +39,19 @@ IVector* IVector::create(const std::vector<int>& data, bool useGpu) {
return
v
;
}
IVector
*
IVector
::
createVectorFromNumpy
(
int
*
data
,
int
dim
,
bool
copy
,
bool
useGpu
)
throw
(
UnsupportError
){
if
(
useGpu
)
{
/// if use gpu only copy=true is supported
if
(
!
copy
)
{
throw
UnsupportError
(
"Gpu mode only supports copy=True"
);
}
return
IVector
::
createGpuVectorFromNumpy
(
data
,
dim
);
}
else
{
return
IVector
::
createCpuVectorFromNumpy
(
data
,
dim
,
copy
);
}
}
IVector
*
IVector
::
createCpuVectorFromNumpy
(
int
*
data
,
int
dim
,
bool
copy
)
{
auto
v
=
new
IVector
();
if
(
copy
)
{
...
...
@@ -50,7 +63,7 @@ IVector* IVector::createCpuVectorFromNumpy(int* data, int dim, bool copy) {
return
v
;
}
IVector
*
IVector
::
createGpuVectorFromNumy
(
int
*
data
,
int
dim
)
{
IVector
*
IVector
::
createGpuVectorFromNum
p
y
(
int
*
data
,
int
dim
)
{
auto
v
=
new
IVector
();
v
->
m
->
vec
=
paddle
::
IVector
::
create
(
dim
,
true
);
v
->
m
->
vec
->
copyFrom
(
data
,
dim
);
...
...
@@ -188,12 +201,25 @@ Vector* Vector::createByPaddleVectorPtr(void* ptr) {
}
}
Vector
*
Vector
::
createVectorFromNumpy
(
float
*
data
,
int
dim
,
bool
copy
,
bool
useGpu
)
throw
(
UnsupportError
){
if
(
useGpu
)
{
/// if use gpu only copy=True is supported
if
(
!
copy
)
{
throw
UnsupportError
(
"Gpu mode only supports copy=True"
);
}
return
Vector
::
createGpuVectorFromNumpy
(
data
,
dim
);
}
else
{
return
Vector
::
createCpuVectorFromNumpy
(
data
,
dim
,
copy
);
}
}
Vector
*
Vector
::
createCpuVectorFromNumpy
(
float
*
data
,
int
dim
,
bool
copy
)
{
CHECK_GT
(
dim
,
0
);
auto
retVec
=
new
Vector
();
if
(
copy
)
{
retVec
->
m
->
vec
=
paddle
::
Vector
::
create
((
size_t
)
dim
,
false
);
ret
urn
retVec
;
ret
Vec
->
m
->
vec
->
copyFrom
(
data
,
dim
)
;
}
else
{
retVec
->
m
->
vec
=
paddle
::
Vector
::
create
(
data
,
(
size_t
)
dim
,
false
);
}
...
...
@@ -237,6 +263,21 @@ void Vector::copyFromNumpyArray(float* data, int dim) {
m
->
vec
->
copyFrom
(
data
,
dim
);
}
FloatArray
Vector
::
getData
()
const
{
if
(
this
->
isGpu
())
{
float
*
src
=
m
->
vec
->
getData
();
size_t
len
=
m
->
vec
->
getSize
();
float
*
dest
=
new
float
[
len
];
hl_memcpy_device2host
(
dest
,
src
,
len
*
sizeof
(
float
));
FloatArray
ret_val
(
dest
,
len
);
ret_val
.
needFree
=
true
;
return
ret_val
;
}
else
{
FloatArray
ret_val
(
m
->
vec
->
getData
(),
m
->
vec
->
getSize
());
return
ret_val
;
}
}
bool
Vector
::
isGpu
()
const
{
return
std
::
dynamic_pointer_cast
<
paddle
::
GpuVector
>
(
m
->
vec
)
!=
nullptr
;
}
...
...
paddle/api/test/testMatrix.py
浏览文件 @
f28f2e0a
...
...
@@ -42,7 +42,7 @@ class TestMatrix(unittest.TestCase):
self
.
assertEqual
(
m
.
getSparseRowCols
(
2
),
[])
def
test_sparse_value
(
self
):
m
=
swig_paddle
.
Matrix
.
createSparse
(
3
,
3
,
6
,
False
)
m
=
swig_paddle
.
Matrix
.
createSparse
(
3
,
3
,
6
,
False
,
False
,
False
)
self
.
assertIsNotNone
(
m
)
m
.
sparseCopyFrom
([
0
,
2
,
3
,
3
],
[
0
,
1
,
2
],
[
7.3
,
4.2
,
3.2
])
...
...
@@ -66,7 +66,7 @@ class TestMatrix(unittest.TestCase):
self
.
assertIsNotNone
(
m
)
self
.
assertTrue
(
abs
(
m
.
get
(
1
,
1
)
-
0.5
)
<
1e-5
)
def
test_numpy
(
self
):
def
test_numpy
Cpu
(
self
):
numpy_mat
=
np
.
matrix
([[
1
,
2
],
[
3
,
4
],
[
5
,
6
]],
dtype
=
"float32"
)
m
=
swig_paddle
.
Matrix
.
createCpuDenseFromNumpy
(
numpy_mat
)
self
.
assertEqual
((
int
(
m
.
getHeight
()),
int
(
m
.
getWidth
())),
...
...
@@ -100,8 +100,20 @@ class TestMatrix(unittest.TestCase):
for
a
,
e
in
zip
(
gpu_m
.
getData
(),
[
1.0
,
3.23
,
3.0
,
4.0
,
5.0
,
6.0
]):
self
.
assertAlmostEqual
(
a
,
e
)
def
test_numpy
(
self
):
numpy_mat
=
np
.
matrix
([[
1
,
2
],
[
3
,
4
],
[
5
,
6
]],
dtype
=
"float32"
)
m
=
swig_paddle
.
Matrix
.
createDenseFromNumpy
(
numpy_mat
)
self
.
assertEqual
((
int
(
m
.
getHeight
()),
int
(
m
.
getWidth
())),
numpy_mat
.
shape
)
self
.
assertEqual
(
m
.
isGpu
(),
swig_paddle
.
isUsingGpu
())
for
a
,
e
in
zip
(
m
.
getData
(),
[
1.0
,
2.0
,
3.0
,
4.0
,
5.0
,
6.0
]):
self
.
assertAlmostEqual
(
a
,
e
)
if
__name__
==
"__main__"
:
swig_paddle
.
initPaddle
(
"--use_gpu=0"
)
unittest
.
main
()
suite
=
unittest
.
TestLoader
().
loadTestsFromTestCase
(
TestMatrix
)
unittest
.
TextTestRunner
().
run
(
suite
)
if
swig_paddle
.
isGpuVersion
():
swig_paddle
.
setUseGpu
(
True
)
unittest
.
main
()
paddle/api/test/testVector.py
浏览文件 @
f28f2e0a
...
...
@@ -20,20 +20,28 @@ import unittest
class
TestIVector
(
unittest
.
TestCase
):
def
test_createZero
(
self
):
m
=
swig_paddle
.
IVector
.
createZero
(
10
)
m
=
swig_paddle
.
IVector
.
createZero
(
10
,
False
)
self
.
assertIsNotNone
(
m
)
for
i
in
xrange
(
10
):
self
.
assertEqual
(
m
[
i
],
0
)
m
[
i
]
=
i
self
.
assertEqual
(
m
[
i
],
i
)
m
=
swig_paddle
.
IVector
.
createZero
(
10
)
self
.
assertEqual
(
m
.
isGpu
(),
swig_paddle
.
isUsingGpu
())
self
.
assertEqual
(
m
.
getData
(),
[
0
]
*
10
)
def
test_create
(
self
):
m
=
swig_paddle
.
IVector
.
create
(
range
(
10
))
m
=
swig_paddle
.
IVector
.
create
(
range
(
10
)
,
False
)
self
.
assertIsNotNone
(
m
)
for
i
in
xrange
(
10
):
self
.
assertEqual
(
m
[
i
],
i
)
m
=
swig_paddle
.
IVector
.
create
(
range
(
10
))
self
.
assertEqual
(
m
.
isGpu
(),
swig_paddle
.
isUsingGpu
())
self
.
assertEqual
(
m
.
getData
(),
range
(
10
))
def
test_numpy
(
self
):
def
test_
cpu_
numpy
(
self
):
vec
=
np
.
array
([
1
,
3
,
4
,
65
,
78
,
1
,
4
],
dtype
=
"int32"
)
iv
=
swig_paddle
.
IVector
.
createCpuVectorFromNumpy
(
vec
)
self
.
assertEqual
(
vec
.
shape
[
0
],
int
(
iv
.
__len__
()))
...
...
@@ -61,25 +69,43 @@ class TestIVector(unittest.TestCase):
expect_vec
=
range
(
0
,
10
)
expect_vec
[
4
]
=
7
self
.
assertEqual
(
vec
.
getData
(),
expect_vec
)
def
test_numpy
(
self
):
vec
=
np
.
array
([
1
,
3
,
4
,
65
,
78
,
1
,
4
],
dtype
=
"int32"
)
iv
=
swig_paddle
.
IVector
.
createVectorFromNumpy
(
vec
)
self
.
assertEqual
(
iv
.
isGpu
(),
swig_paddle
.
isUsingGpu
())
self
.
assertEqual
(
iv
.
getData
(),
list
(
vec
))
class
TestVector
(
unittest
.
TestCase
):
def
testCreateZero
(
self
):
v
=
swig_paddle
.
Vector
.
createZero
(
10
)
v
=
swig_paddle
.
Vector
.
createZero
(
10
,
False
)
self
.
assertIsNotNone
(
v
)
for
i
in
xrange
(
len
(
v
)):
self
.
assertTrue
(
util
.
doubleEqual
(
v
[
i
],
0
))
v
[
i
]
=
i
self
.
assertTrue
(
util
.
doubleEqual
(
v
[
i
],
i
))
v
=
swig_paddle
.
Vector
.
createZero
(
10
)
self
.
assertEqual
(
v
.
isGpu
(),
swig_paddle
.
isUsingGpu
())
self
.
assertEqual
(
v
.
getData
(),
[
0
]
*
10
)
def
testCreate
(
self
):
v
=
swig_paddle
.
Vector
.
create
([
x
/
100.0
for
x
in
xrange
(
100
)])
v
=
swig_paddle
.
Vector
.
create
([
x
/
100.0
for
x
in
xrange
(
100
)]
,
False
)
self
.
assertIsNotNone
(
v
)
for
i
in
xrange
(
len
(
v
)):
self
.
assertTrue
(
util
.
doubleEqual
(
v
[
i
],
i
/
100.0
))
self
.
assertEqual
(
100
,
len
(
v
))
v
=
swig_paddle
.
Vector
.
create
([
x
/
100.0
for
x
in
xrange
(
100
)])
self
.
assertEqual
(
v
.
isGpu
(),
swig_paddle
.
isUsingGpu
())
self
.
assertEqual
(
100
,
len
(
v
))
vdata
=
v
.
getData
()
for
i
in
xrange
(
len
(
v
)):
self
.
assertTrue
(
util
.
doubleEqual
(
vdata
[
i
],
i
/
100.0
))
def
testNumpy
(
self
):
def
test
Cpu
Numpy
(
self
):
numpy_arr
=
np
.
array
([
1.2
,
2.3
,
3.4
,
4.5
],
dtype
=
"float32"
)
vec
=
swig_paddle
.
Vector
.
createCpuVectorFromNumpy
(
numpy_arr
)
assert
isinstance
(
vec
,
swig_paddle
.
Vector
)
...
...
@@ -102,9 +128,18 @@ class TestVector(unittest.TestCase):
for
i
in
xrange
(
1
,
len
(
numpy_3
)):
util
.
doubleEqual
(
numpy_3
[
i
],
vec
[
i
])
def
testNumpy
(
self
):
numpy_arr
=
np
.
array
([
1.2
,
2.3
,
3.4
,
4.5
],
dtype
=
"float32"
)
vec
=
swig_paddle
.
Vector
.
createVectorFromNumpy
(
numpy_arr
)
self
.
assertEqual
(
vec
.
isGpu
(),
swig_paddle
.
isUsingGpu
())
vecData
=
vec
.
getData
()
for
n
,
v
in
zip
(
numpy_arr
,
vecData
):
self
.
assertTrue
(
util
.
doubleEqual
(
n
,
v
))
def
testCopyFromNumpy
(
self
):
vec
=
swig_paddle
.
Vector
.
createZero
(
1
)
vec
=
swig_paddle
.
Vector
.
createZero
(
1
,
False
)
arr
=
np
.
array
([
1.3
,
3.2
,
2.4
],
dtype
=
"float32"
)
vec
.
copyFromNumpyArray
(
arr
)
for
i
in
xrange
(
len
(
vec
)):
...
...
@@ -112,6 +147,9 @@ class TestVector(unittest.TestCase):
if
__name__
==
'__main__'
:
swig_paddle
.
initPaddle
(
"--use_gpu=1"
if
swig_paddle
.
isGpuVersion
()
else
"--use_gpu=0"
)
unittest
.
main
()
swig_paddle
.
initPaddle
(
"--use_gpu=0"
)
suite
=
unittest
.
TestLoader
().
loadTestsFromTestCase
(
TestVector
)
unittest
.
TextTestRunner
().
run
(
suite
)
if
swig_paddle
.
isGpuVersion
():
swig_paddle
.
setUseGpu
(
True
)
unittest
.
main
()
\ No newline at end of file
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录