Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
f201b465
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f201b465
编写于
10月 16, 2019
作者:
J
juncaipeng
提交者:
GitHub
10月 16, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Move pool2d to add_quant_dequant_pass, test=develop (#20586)
* move pool2d to add_quant_dequant_pass, test=develop
上级
efa10937
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
57 addition
and
35 deletion
+57
-35
python/paddle/fluid/contrib/slim/quantization/quantization_pass.py
...ddle/fluid/contrib/slim/quantization/quantization_pass.py
+16
-11
python/paddle/fluid/contrib/slim/tests/test_quantization_pass.py
...paddle/fluid/contrib/slim/tests/test_quantization_pass.py
+41
-24
未找到文件。
python/paddle/fluid/contrib/slim/quantization/quantization_pass.py
浏览文件 @
f201b465
...
...
@@ -26,7 +26,7 @@ __all__ = [
'AddQuantDequantPass'
]
_quantizable_op_list
=
[
'conv2d'
,
'depthwise_conv2d'
,
'mul'
,
'pool2d'
]
_quantizable_op_list
=
[
'conv2d'
,
'depthwise_conv2d'
,
'mul'
]
_fake_quant_op_list
=
[
'fake_quantize_abs_max'
,
'fake_quantize_range_abs_max'
,
...
...
@@ -161,13 +161,11 @@ class QuantizationTransformPass(object):
persistable_vars
=
[
p
.
name
()
for
p
in
graph
.
all_persistable_nodes
()]
def
_quant_preprocess
(
op_node
):
pool_skipped
=
op_node
.
op
().
has_attr
(
"pooling_type"
)
and
\
op_node
.
op
().
attr
(
"pooling_type"
)
==
'avg'
user_skipped
=
isinstance
(
self
.
_skip_pattern
,
str
)
and
\
op_node
.
op
().
has_attr
(
"op_namescope"
)
and
\
op_node
.
op
().
attr
(
"op_namescope"
).
find
(
self
.
_skip_pattern
)
!=
-
1
if
pool_skipped
or
user_skipped
:
if
user_skipped
:
op_node
.
op
().
_set_attr
(
"skip_quant"
,
True
)
def
_transform_forward
(
graph
,
op
):
...
...
@@ -1163,10 +1161,15 @@ class ScaleForInferencePass(object):
class
AddQuantDequantPass
(
object
):
def
__init__
(
self
,
scope
=
None
,
place
=
None
,
moving_rate
=
0.9
,
quant_bits
=
8
):
def
__init__
(
self
,
scope
=
None
,
place
=
None
,
moving_rate
=
0.9
,
quant_bits
=
8
,
skip_pattern
=
'skip_quant'
):
"""
This pass is used to add quant_dequant op for some ops, such as the
'elementwise_add' and '
average
pool2d' op.
'elementwise_add' and 'pool2d' op.
"""
self
.
_scope
=
scope
self
.
_place
=
place
...
...
@@ -1175,11 +1178,12 @@ class AddQuantDequantPass(object):
self
.
_is_test
=
None
self
.
_target_ops
=
[
"elementwise_add"
,
"pool2d"
]
self
.
_target_grad_ops
=
[
'%s_grad'
%
(
op
)
for
op
in
self
.
_target_ops
]
self
.
_skip_pattern
=
skip_pattern
def
apply
(
self
,
graph
):
"""
Add quant_dequant before some ops, such as the 'elementwise_add'
and '
average
pool2d' op.
and 'pool2d' op.
Args:
graph(IrGraph): the target graph.
"""
...
...
@@ -1191,6 +1195,11 @@ class AddQuantDequantPass(object):
for
op_node
in
ops
:
if
op_node
.
name
()
in
self
.
_target_ops
:
if
isinstance
(
self
.
_skip_pattern
,
str
)
and
\
op_node
.
op
().
has_attr
(
"op_namescope"
)
and
\
op_node
.
op
().
attr
(
"op_namescope"
).
find
(
self
.
_skip_pattern
)
!=
-
1
:
continue
in_nodes_all_not_persistable
=
True
for
input_name
in
op_node
.
input_arg_names
():
in_node
=
graph
.
_find_node_by_name
(
op_node
.
inputs
,
...
...
@@ -1201,10 +1210,6 @@ class AddQuantDequantPass(object):
if
not
in_nodes_all_not_persistable
:
continue
if
op_node
.
op
().
has_attr
(
"pooling_type"
)
and
\
op_node
.
op
().
attr
(
"pooling_type"
)
==
'max'
:
continue
input_names
=
op_node
.
input_arg_names
()
for
input_name
in
input_names
:
in_node
=
graph
.
_find_node_by_name
(
op_node
.
inputs
,
...
...
python/paddle/fluid/contrib/slim/tests/test_quantization_pass.py
浏览文件 @
f201b465
...
...
@@ -42,7 +42,7 @@ def linear_fc(num):
return
loss
def
residual_block
(
num
):
def
residual_block
(
num
,
quant_skip_pattern
=
None
):
def
conv_bn_layer
(
input
,
ch_out
,
filter_size
,
...
...
@@ -67,8 +67,14 @@ def residual_block(num):
conv
=
conv_bn_layer
(
hidden
,
16
,
3
,
1
,
1
,
act
=
None
,
bias_attr
=
True
)
short
=
conv_bn_layer
(
hidden
,
16
,
1
,
1
,
0
,
act
=
None
)
hidden
=
fluid
.
layers
.
elementwise_add
(
x
=
conv
,
y
=
short
,
act
=
'relu'
)
pool
=
fluid
.
layers
.
pool2d
(
input
=
hidden
,
pool_size
=
2
,
pool_type
=
'avg'
,
pool_stride
=
2
)
if
quant_skip_pattern
:
with
fluid
.
name_scope
(
quant_skip_pattern
):
pool
=
fluid
.
layers
.
pool2d
(
input
=
hidden
,
pool_size
=
2
,
pool_type
=
'avg'
,
pool_stride
=
2
)
else
:
pool
=
fluid
.
layers
.
pool2d
(
input
=
hidden
,
pool_size
=
2
,
pool_type
=
'avg'
,
pool_stride
=
2
)
fc
=
fluid
.
layers
.
fc
(
input
=
pool
,
size
=
10
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
fc
,
label
=
label
)
loss
=
fluid
.
layers
.
mean
(
loss
)
...
...
@@ -134,7 +140,10 @@ class TestQuantizationTransformPass(unittest.TestCase):
arg_name
.
endswith
(
'.quantized.dequantized'
))
self
.
assertTrue
(
arg_name
in
quantized_ops
)
def
linear_fc_quant
(
self
,
activation_quant_type
,
for_ci
=
True
):
def
linear_fc_quant
(
self
,
activation_quant_type
,
weight_quantize_type
,
for_ci
=
True
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
,
startup
):
...
...
@@ -146,7 +155,8 @@ class TestQuantizationTransformPass(unittest.TestCase):
transform_pass
=
QuantizationTransformPass
(
scope
=
fluid
.
global_scope
(),
place
=
place
,
activation_quantize_type
=
activation_quant_type
)
activation_quantize_type
=
activation_quant_type
,
weight_quantize_type
=
weight_quantize_type
)
transform_pass
.
apply
(
graph
)
if
not
for_ci
:
marked_nodes
=
set
()
...
...
@@ -167,15 +177,19 @@ class TestQuantizationTransformPass(unittest.TestCase):
val_marked_nodes
)
def
test_linear_fc_quant_abs_max
(
self
):
self
.
linear_fc_quant
(
'abs_max'
,
for_ci
=
True
)
self
.
linear_fc_quant
(
'abs_max'
,
'abs_max'
,
for_ci
=
True
)
def
test_linear_fc_quant_range_abs_max
(
self
):
self
.
linear_fc_quant
(
'range_abs_max'
,
for_ci
=
True
)
self
.
linear_fc_quant
(
'range_abs_max'
,
'abs_max'
,
for_ci
=
True
)
def
test_linear_fc_quant_moving_average_abs_max
(
self
):
self
.
linear_fc_quant
(
'moving_average_abs_max'
,
for_ci
=
True
)
self
.
linear_fc_quant
(
'moving_average_abs_max'
,
'channel_wise_abs_max'
,
for_ci
=
True
)
def
residual_block_quant
(
self
,
activation_quant_type
,
for_ci
=
True
):
def
residual_block_quant
(
self
,
activation_quant_type
,
weight_quantize_type
,
for_ci
=
True
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
,
startup
):
...
...
@@ -187,7 +201,8 @@ class TestQuantizationTransformPass(unittest.TestCase):
transform_pass
=
QuantizationTransformPass
(
scope
=
fluid
.
global_scope
(),
place
=
place
,
activation_quantize_type
=
activation_quant_type
)
activation_quantize_type
=
activation_quant_type
,
weight_quantize_type
=
weight_quantize_type
)
transform_pass
.
apply
(
graph
)
if
not
for_ci
:
marked_nodes
=
set
()
...
...
@@ -208,13 +223,14 @@ class TestQuantizationTransformPass(unittest.TestCase):
val_marked_nodes
)
def
test_residual_block_abs_max
(
self
):
self
.
residual_block_quant
(
'abs_max'
,
for_ci
=
True
)
self
.
residual_block_quant
(
'abs_max'
,
'abs_max'
,
for_ci
=
True
)
def
test_residual_block_range_abs_max
(
self
):
self
.
residual_block_quant
(
'range_abs_max'
,
for_ci
=
True
)
self
.
residual_block_quant
(
'range_abs_max'
,
'abs_max'
,
for_ci
=
True
)
def
test_residual_block_moving_average_abs_max
(
self
):
self
.
residual_block_quant
(
'moving_average_abs_max'
,
for_ci
=
True
)
self
.
residual_block_quant
(
'moving_average_abs_max'
,
'channel_wise_abs_max'
,
for_ci
=
True
)
class
TestQuantizationFreezePass
(
unittest
.
TestCase
):
...
...
@@ -494,11 +510,14 @@ class TestAddQuantDequantPass(unittest.TestCase):
self
.
_target_ops
=
{
'elementwise_add'
,
'pool2d'
}
self
.
_target_grad_ops
=
{
'elementwise_add_grad'
,
'pool2d_grad'
}
def
check_graph
(
self
,
graph
):
def
check_graph
(
self
,
graph
,
skip_pattern
=
None
):
ops
=
graph
.
all_op_nodes
()
for
op_node
in
ops
:
if
op_node
.
name
()
in
self
.
_target_ops
:
if
skip_pattern
and
op_node
.
op
().
has_attr
(
"op_namescope"
)
and
\
op_node
.
op
().
attr
(
"op_namescope"
).
find
(
skip_pattern
)
!=
-
1
:
continue
in_nodes_all_not_persistable
=
True
for
input_name
in
op_node
.
input_arg_names
():
in_node
=
graph
.
_find_node_by_name
(
op_node
.
inputs
,
...
...
@@ -508,20 +527,15 @@ class TestAddQuantDequantPass(unittest.TestCase):
not
in_node
.
persistable
())
if
not
in_nodes_all_not_persistable
:
continue
if
op_node
.
op
().
has_attr
(
"pooling_type"
)
and
\
op_node
.
op
().
attr
(
"pooling_type"
)
==
'max'
:
continue
input_names
=
op_node
.
input_arg_names
()
for
input_name
in
input_names
:
self
.
assertTrue
(
input_name
.
endswith
(
'.quant_dequant'
))
def
residual_block_quant
(
self
,
for_ci
=
True
):
def
residual_block_quant
(
self
,
skip_pattern
=
None
,
for_ci
=
True
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
,
startup
):
loss
=
residual_block
(
1
)
loss
=
residual_block
(
2
,
skip_pattern
)
opt
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
opt
.
minimize
(
loss
)
place
=
fluid
.
CPUPlace
()
...
...
@@ -535,7 +549,7 @@ class TestAddQuantDequantPass(unittest.TestCase):
if
op
.
name
().
find
(
'quant'
)
>
-
1
:
marked_nodes
.
add
(
op
)
graph
.
draw
(
'.'
,
'add_quant_dequant_graph'
,
marked_nodes
)
self
.
check_graph
(
graph
)
self
.
check_graph
(
graph
,
skip_pattern
)
program
=
graph
.
to_program
()
val_graph
=
IrGraph
(
core
.
Graph
(
program
.
desc
),
for_test
=
False
)
if
not
for_ci
:
...
...
@@ -546,7 +560,10 @@ class TestAddQuantDequantPass(unittest.TestCase):
val_graph
.
draw
(
'.'
,
'val_add_quant_dequant_graph'
,
val_marked_nodes
)
def
test_residual_block
(
self
):
self
.
residual_block_quant
(
for_ci
=
True
)
self
.
residual_block_quant
(
skip_pattern
=
None
,
for_ci
=
True
)
def
test_residual_block_skip_pattern
(
self
):
self
.
residual_block_quant
(
skip_pattern
=
'skip_quant'
,
for_ci
=
True
)
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录