Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
f0f06992
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f0f06992
编写于
8月 23, 2018
作者:
T
tensor-tang
提交者:
GitHub
8月 23, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #12878 from tensor-tang/feature/op/attention_lstm
Add attention lstm cpu forward
上级
5ea7bf88
4e538db1
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
969 addition
and
83 deletion
+969
-83
CMakeLists.txt
CMakeLists.txt
+0
-6
paddle/fluid/operators/attention_lstm_op.cc
paddle/fluid/operators/attention_lstm_op.cc
+422
-0
paddle/fluid/operators/attention_lstm_op.h
paddle/fluid/operators/attention_lstm_op.h
+41
-0
paddle/fluid/operators/fusion_lstm_op.h
paddle/fluid/operators/fusion_lstm_op.h
+0
-1
paddle/fluid/operators/math/blas.h
paddle/fluid/operators/math/blas.h
+33
-0
paddle/fluid/operators/math/blas_impl.h
paddle/fluid/operators/math/blas_impl.h
+126
-63
paddle/fluid/operators/math/cpu_vec.h
paddle/fluid/operators/math/cpu_vec.h
+105
-0
paddle/fluid/operators/math/fc_compute.h
paddle/fluid/operators/math/fc_compute.h
+15
-7
paddle/fluid/platform/cpu_info.cc
paddle/fluid/platform/cpu_info.cc
+12
-3
paddle/fluid/platform/cpu_info.h
paddle/fluid/platform/cpu_info.h
+1
-3
paddle/fluid/platform/dynload/mklml.h
paddle/fluid/platform/dynload/mklml.h
+6
-0
python/paddle/fluid/tests/unittests/test_attention_lstm_op.py
...on/paddle/fluid/tests/unittests/test_attention_lstm_op.py
+208
-0
未找到文件。
CMakeLists.txt
浏览文件 @
f0f06992
...
...
@@ -138,12 +138,6 @@ else()
set
(
THIRD_PARTY_BUILD_TYPE Release
)
endif
()
if
(
WITH_MKL
)
option
(
MKL_SPLIT_GEMM
"PaddlePaddle MKL gemm would split to small ones"
OFF
)
if
(
MKL_SPLIT_GEMM
)
add_definitions
(
-DPADDLE_MKL_SPLIT_GEMM
)
endif
()
endif
()
set
(
WITH_MKLML
${
WITH_MKL
}
)
if
(
NOT DEFINED WITH_MKLDNN
)
if
(
WITH_MKL AND AVX2_FOUND
)
...
...
paddle/fluid/operators/attention_lstm_op.cc
0 → 100644
浏览文件 @
f0f06992
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/attention_lstm_op.h"
#include <sys/time.h>
#include <string>
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/fluid/operators/math/fc_compute.h"
#include "paddle/fluid/platform/cpu_info.h"
namespace
paddle
{
namespace
operators
{
void
AttentionLSTMOp
::
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of AttentionLSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"C0"
),
"Input(C0) of AttentionLSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"LSTMWeight"
),
"Input(LSTMWeight) of AttentionLSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"LSTMBias"
),
"Input(LSTMBias) of AttentionLSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"AttentionWeight"
),
"Input(AttentionWeight) of AttentionLSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Hidden"
),
"Output(Hidden) of AttentionLSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Cell"
),
"Output(Cell) of AttentionLSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"AttentionedX"
),
"Output(AttentionedX) of AttentionLSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"AttentionFCOut"
),
"Output(AttentionFCOut) of AttentionLSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"LSTMX"
),
"Output(LSTMX) of AttentionLSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"LSTMOUT"
),
"Output(LSTMOUT) of AttentionLSTM should not be null."
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
const
int
M
=
x_dims
[
1
];
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2
,
"Input(X)'s rank must be 2."
);
auto
w_dims
=
ctx
->
GetInputDim
(
"LSTMWeight"
);
const
int
D
=
w_dims
[
1
]
/
4
;
PADDLE_ENFORCE_EQ
(
w_dims
.
size
(),
2
,
"Input(LSTMWeight)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
w_dims
[
0
],
D
+
M
,
"LSTMWeight dims should be (%d + %d) * %d."
,
D
+
M
,
4
*
D
);
auto
b_dims
=
ctx
->
GetInputDim
(
"LSTMBias"
);
PADDLE_ENFORCE_EQ
(
b_dims
.
size
(),
2
,
"Input(LSTMBias)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
b_dims
[
0
],
1
,
"LSTMBias dims should be 1 x %d."
,
4
*
D
);
PADDLE_ENFORCE_EQ
(
b_dims
[
1
],
4
*
D
,
"LSTMBias dims should be 1 x %d."
,
4
*
D
);
auto
c_dims
=
ctx
->
GetInputDim
(
"C0"
);
PADDLE_ENFORCE_EQ
(
c_dims
.
size
(),
2
,
"Input(C0)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
c_dims
[
1
],
D
,
"C0 dims should be N x %d."
,
D
);
if
(
ctx
->
HasInput
(
"H0"
))
{
auto
h_dims
=
ctx
->
GetInputDim
(
"H0"
);
PADDLE_ENFORCE
(
h_dims
==
c_dims
,
"The dimension of Input(H0) and Input(C0) "
"should be the same."
);
}
auto
atten_w_dims
=
ctx
->
GetInputDim
(
"AttentionWeight"
);
PADDLE_ENFORCE_EQ
(
atten_w_dims
.
size
(),
2
,
"Input(AttentionWeight)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
atten_w_dims
[
0
],
M
+
D
,
"AttentionWeight shapes must be (%d + %d) * 1."
,
M
,
D
);
PADDLE_ENFORCE_EQ
(
atten_w_dims
[
1
],
1
,
"AttentionWeight shapes must be (%d + %d) * 1."
,
M
,
D
);
if
(
ctx
->
HasInput
(
"AttentionBias"
))
{
auto
atten_b_dims
=
ctx
->
GetInputDim
(
"AttentionBias"
);
PADDLE_ENFORCE_EQ
(
atten_b_dims
.
size
(),
2
,
"Input(AttentionBias)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
atten_b_dims
[
0
],
1
,
"AttentionBias shapes must be 1 * 1."
);
PADDLE_ENFORCE_EQ
(
atten_b_dims
[
1
],
1
,
"AttentionBias shapes must be 1 * 1."
);
}
if
(
ctx
->
HasInput
(
"AttentionScalar"
))
{
auto
dims
=
ctx
->
GetInputDim
(
"AttentionScalar"
);
PADDLE_ENFORCE_EQ
(
dims
.
size
(),
2
,
"Input(AttentionScalar)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
dims
[
0
],
1
,
"AttentionScalar shapes must be 1 * 1."
);
PADDLE_ENFORCE_EQ
(
dims
[
1
],
1
,
"AttentionScalar shapes must be 1 * 1."
);
}
if
(
ctx
->
HasInput
(
"AttentionScalarBias"
))
{
auto
dims
=
ctx
->
GetInputDim
(
"AttentionScalarBias"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"AttentionScalar"
),
"AttentionScalar should not be null when have AttentionScalarBias."
);
PADDLE_ENFORCE_EQ
(
dims
.
size
(),
2
,
"Input(AttentionScalarBias)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
dims
[
0
],
1
,
"AttentionScalarBias shapes must be 1 * 1."
);
PADDLE_ENFORCE_EQ
(
dims
[
1
],
1
,
"AttentionScalarBias shapes must be 1 * 1."
);
}
framework
::
DDim
out_dims
({
x_dims
[
0
],
D
});
ctx
->
SetOutputDim
(
"Hidden"
,
out_dims
);
ctx
->
SetOutputDim
(
"Cell"
,
out_dims
);
ctx
->
SetOutputDim
(
"AttentionedX"
,
{
x_dims
[
0
],
1
});
ctx
->
SetOutputDim
(
"LSTMX"
,
{
1
,
M
});
ctx
->
SetOutputDim
(
"LSTMOUT"
,
{
1
,
4
*
D
});
// AttentionFCOut should be reshape as (maxseqlen,1) in runtime
ctx
->
ShareLoD
(
"X"
,
"Hidden"
);
ctx
->
ShareLoD
(
"X"
,
"Cell"
);
}
framework
::
OpKernelType
AttentionLSTMOp
::
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
)
->
type
()),
ctx
.
device_context
());
}
void
AttentionLSTMOpMaker
::
Make
()
{
AddInput
(
"X"
,
"(LoDTensor) the input is a LodTensor, which support "
"variable-time length input sequence. The underlying tensor in "
"this LoDTensor is a matrix with shape (T X M), where T is the "
"total time steps in this mini-batch, M is the dim size of x."
);
AddInput
(
"C0"
,
"(Tensor) LSTM C0"
"This is a tensor with shape (N x D), where N is the batch size, D "
"is the gate size."
"C0 is necessary because of attention."
);
AddInput
(
"H0"
,
"(Tensor, optional) LSTM H0"
"This is a tensor with shape (N x D), where N is the "
"batch size and D is the gate size."
)
.
AsDispensable
();
AddInput
(
"AttentionWeight"
,
"(Tensor) the weights of attention fc. Always relu the fc result."
"The shape is ((M+D) x 1), where M is the dim size of x, D is the "
"gate size of LSTM."
);
AddInput
(
"AttentionBias"
,
"(Tensor, optional) the bias of attention fc."
"The shape is (1 x 1)"
)
.
AsDispensable
();
AddInput
(
"AttentionScalar"
,
"(Tensor, optional) the scalar on the result of attentioned fc. "
"Always relu the Scalar."
"The shape is (1 x 1)"
)
.
AsDispensable
();
AddInput
(
"AttentionScalarBias"
,
"(Tensor, optional) the scalar bias of attention fc."
"The shape is (1 x 1)"
)
.
AsDispensable
();
AddInput
(
"LSTMWeight"
,
"(Tensor) the combined weight of LSTM"
" - The shape is ((D+M) x 4D), where D is the hidden gate size, M "
"is the dim size of x"
" - Weight = {W_forget, W_input, W_output, W_cell}"
);
AddInput
(
"LSTMBias"
,
"(Tensor) the combined bias of LSTM, shape (1x4D)."
"Note: we should add the bias of hidden and context accorindg to "
"the same gate: "
"{B_forget, B_input, B_output, B_cell}"
);
AddOutput
(
"Hidden"
,
"(LoDTensor) (same as LSTMOp) the hidden state of LSTM operator. "
"The shape is (T x D), and lod is the same with the `Input`."
);
AddOutput
(
"Cell"
,
"(LoDTensor) (same as LSTMOp) the cell state of LSTM operator. "
"The shape is (T x D), and lod is the same with the `Input`."
);
AddOutput
(
"AttentionedX"
,
"(Tensor) shape is (T x 1), the result after X * AttentionWeight,"
" where T is the total time steps in this mini-batch,"
" D is the hidden size."
)
.
AsIntermediate
();
AddOutput
(
"AttentionFCOut"
,
"(Tensor) (max_seq_len, 1), compute at each step."
)
.
AsIntermediate
();
AddOutput
(
"LSTMX"
,
"(Tensor) the input X of LSTM for each step."
"Shape is (1 x M), where M is the x frame size"
)
.
AsIntermediate
();
AddOutput
(
"LSTMOUT"
,
"(Tensor) the output of LSTM X(1*(D+M))* weight((D+M)*4D) for each step."
"Shape is (1 x 4D), where M is the x frame size"
)
.
AsIntermediate
();
AddAttr
<
std
::
string
>
(
"gate_activation"
,
"(string, default: sigmoid)"
"The activation for input gate, forget gate and output "
"gate, `sigmoid` by default."
)
.
SetDefault
(
"sigmoid"
)
.
InEnum
({
"sigmoid"
,
"tanh"
,
"relu"
,
"identity"
});
AddAttr
<
std
::
string
>
(
"cell_activation"
,
"(string, default: tanh)"
"The activation for cell output, `tanh` by defalut."
)
.
SetDefault
(
"tanh"
)
.
InEnum
({
"sigmoid"
,
"tanh"
,
"relu"
,
"identity"
});
AddAttr
<
std
::
string
>
(
"candidate_activation"
,
"(string, default: tanh)"
"The activation for candidate hidden state, "
"`tanh` by default."
)
.
SetDefault
(
"tanh"
)
.
InEnum
({
"sigmoid"
,
"tanh"
,
"relu"
,
"identity"
});
AddComment
(
R"DOC(
Attention Long-Short Term Memory (LSTM) Operator.
Attention part:
concat( x(seqlen * M), expand( cell_t-1(1,D) ) ) => tmp(seqlen*(M+D))
tmp(seqlen*(M+D)) * fc((M+D)*1) => fcout(seqlen*1) with bias, relu
fcout(seqlen*1) * scalar => fcout(seqlen*1) with bias, relu
dotmul and sum pool ( fcout(seqlen*1), x(seqlen * M) ) => lstm_x_t(1, M)
LSTM part:
use lstm_x_t as input and compute as standard LSTM.
)DOC"
);
}
// y[i] = (x[i] + bias[0]) > 0 ? (x[i] + bias[0]) : 0;
template
<
typename
T
>
inline
void
bias_relu
(
const
int
n
,
const
T
*
x
,
const
T
*
bias
,
T
*
y
)
{
if
(
bias
)
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
x
[
i
]
+
bias
[
0
];
}
math
::
vec_relu
<
T
>
(
n
,
y
,
y
);
}
else
{
math
::
vec_relu
<
T
>
(
n
,
x
,
y
);
}
}
template
<
typename
DeviceContext
,
typename
T
>
inline
void
vec_softmax
(
const
math
::
BlasT
<
DeviceContext
,
T
>&
blas
,
const
int
n
,
const
T
*
x
,
T
*
y
)
{
T
scalar
=
x
[
0
];
// max
for
(
int
i
=
1
;
i
<
n
;
++
i
)
{
scalar
=
scalar
<
x
[
i
]
?
x
[
i
]
:
scalar
;
}
// sub
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
x
[
i
]
-
scalar
;
}
// exp
blas
.
VEXP
(
n
,
y
,
y
);
// sum
scalar
=
T
(
0
);
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
scalar
+=
y
[
i
];
}
// scale
blas
.
SCAL
(
n
,
static_cast
<
T
>
(
1
)
/
scalar
,
y
);
}
template
<
typename
T
>
class
AttentionLSTMKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
using
DeviceContext
=
paddle
::
platform
::
CPUDeviceContext
;
auto
*
x
=
ctx
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
h0
=
ctx
.
Input
<
Tensor
>
(
"H0"
);
auto
*
c0
=
ctx
.
Input
<
Tensor
>
(
"C0"
);
auto
*
atten_w
=
ctx
.
Input
<
Tensor
>
(
"AttentionWeight"
);
auto
*
atten_b
=
ctx
.
Input
<
Tensor
>
(
"AttentionBias"
);
auto
*
atten_scalar
=
ctx
.
Input
<
Tensor
>
(
"AttentionScalar"
);
auto
*
atten_scalar_bias
=
ctx
.
Input
<
Tensor
>
(
"AttentionScalarBias"
);
auto
*
lstm_w
=
ctx
.
Input
<
Tensor
>
(
"LSTMWeight"
);
auto
*
lstm_b
=
ctx
.
Input
<
Tensor
>
(
"LSTMBias"
);
auto
*
hidden_out
=
ctx
.
Output
<
LoDTensor
>
(
"Hidden"
);
auto
*
cell_out
=
ctx
.
Output
<
LoDTensor
>
(
"Cell"
);
auto
*
atted_x
=
ctx
.
Output
<
Tensor
>
(
"AttentionedX"
);
auto
*
fc_out
=
ctx
.
Output
<
Tensor
>
(
"AttentionFCOut"
);
auto
*
lstm_x
=
ctx
.
Output
<
Tensor
>
(
"LSTMX"
);
auto
*
lstm_out
=
ctx
.
Output
<
Tensor
>
(
"LSTMOUT"
);
// some shape should be reshape here since infershape can not get lod info
auto
x_lod
=
x
->
lod
();
const
int
N
=
x_lod
[
0
].
size
()
-
1
;
// batch size
auto
x_dims
=
x
->
dims
();
// T x M
auto
w_dims
=
lstm_w
->
dims
();
// (D+M) x 4D
const
int
total_T
=
x_dims
[
0
];
const
int
M
=
x_dims
[
1
];
// x frame size
const
int
D
=
w_dims
[
1
]
/
4
;
// gate frame size
const
int
D2
=
D
*
2
;
const
int
D3
=
D
*
3
;
const
int
D4
=
w_dims
[
1
];
int
max_seq_len
=
x_lod
[
0
][
1
];
for
(
int
i
=
1
;
i
<
N
;
++
i
)
{
int
len
=
x_lod
[
0
][
i
+
1
]
-
x_lod
[
0
][
i
];
max_seq_len
=
max_seq_len
<
len
?
len
:
max_seq_len
;
}
PADDLE_ENFORCE_EQ
(
x_lod
.
size
(),
1
,
"Input(X)'s lod size must be 1."
);
PADDLE_ENFORCE_EQ
(
c0
->
dims
()[
0
],
N
,
"C0 dims should be %d x %d."
,
N
,
D
);
fc_out
->
Resize
({
max_seq_len
,
1
});
math
::
VecActivations
<
T
>
act_functor
;
std
::
function
<
void
(
const
int
,
const
T
*
,
T
*
)
>
act_gate
,
act_cell
,
act_cand
;
act_gate
=
act_functor
(
ctx
.
Attr
<
std
::
string
>
(
"gate_activation"
));
act_cell
=
act_functor
(
ctx
.
Attr
<
std
::
string
>
(
"cell_activation"
));
act_cand
=
act_functor
(
ctx
.
Attr
<
std
::
string
>
(
"candidate_activation"
));
const
T
*
x_data
=
x
->
data
<
T
>
();
const
T
*
h0_data
=
h0
?
h0
->
data
<
T
>
()
:
NULL
;
const
T
*
c0_data
=
c0
->
data
<
T
>
();
const
T
*
lstm_w_data
=
lstm_w
->
data
<
T
>
();
const
T
*
lstm_b_data
=
lstm_b
->
data
<
T
>
();
const
T
*
atten_w_data
=
atten_w
->
data
<
T
>
();
const
T
*
atten_b_data
=
atten_b
?
atten_b
->
data
<
T
>
()
:
NULL
;
const
T
*
atten_scalar_data
=
atten_scalar
?
atten_scalar
->
data
<
T
>
()
:
NULL
;
const
T
*
atten_scalar_bias_data
=
atten_scalar_bias
?
atten_scalar_bias
->
data
<
T
>
()
:
NULL
;
T
*
hidden_out_data
=
hidden_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
cell_out_data
=
cell_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
atted_x_data
=
atted_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
fc_out_data
=
fc_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
lstm_x_data
=
lstm_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
lstm_out_data
=
lstm_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// x(TxM) * fc (Mx1) part of atten_wgt(M+D)x1
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
ctx
);
math
::
FCCompute
<
DeviceContext
,
T
>
(
blas
,
total_T
,
1
,
M
,
x_data
,
atten_w_data
,
atted_x_data
,
atten_b_data
);
const
T
*
cur_atten_x_data
=
atted_x_data
;
const
T
*
cur_x_data
=
x_data
;
const
T
*
prev_cell_data
=
NULL
;
const
T
*
prev_hidden_data
=
NULL
;
T
*
cur_cell_out_data
=
cell_out_data
;
T
*
cur_hidden_out_data
=
hidden_out_data
;
for
(
int
i
=
0
;
i
<
N
;
++
i
)
{
int
seq_len
=
x_lod
[
0
][
i
+
1
]
-
x_lod
[
0
][
i
];
prev_cell_data
=
c0_data
+
i
*
D
;
prev_hidden_data
=
h0_data
?
h0_data
+
i
*
D
:
NULL
;
for
(
int
step
=
0
;
step
<
seq_len
;
++
step
)
{
/// 1. compute attention vector
// 1a. prev_cell(1xD) * fc(D) rest part of atten_wgt
T
prev_cell_bias
=
blas
.
DOT
(
D
,
prev_cell_data
,
atten_w_data
+
M
);
// 1b. add cell bias and relu
bias_relu
<
T
>
(
seq_len
,
cur_atten_x_data
,
&
prev_cell_bias
,
fc_out_data
);
// 1c. fc scalar
if
(
atten_scalar_data
)
{
blas
.
SCAL
(
seq_len
,
*
atten_scalar_data
,
fc_out_data
);
bias_relu
<
T
>
(
seq_len
,
fc_out_data
,
atten_scalar_bias_data
,
fc_out_data
);
}
// 1d. softmax
vec_softmax
<
DeviceContext
,
T
>
(
blas
,
seq_len
,
fc_out_data
,
fc_out_data
);
// mul x(seq_len*M) and sum pool
math
::
FCCompute
<
DeviceContext
,
T
>
(
blas
,
1
,
M
,
seq_len
,
fc_out_data
,
cur_x_data
,
lstm_x_data
);
/// 2. compute LSTM step
// lstm weight : concat[forget , input , output , tilde]
// shape : (D + M) x (4 * D)
// fc inputX(1xM) * weightX(M*(4D)) => 1 x 4D
blas
.
MatMul
(
1
,
D4
,
M
,
lstm_x_data
,
lstm_w_data
+
D
*
D4
,
lstm_out_data
);
if
(
prev_hidden_data
)
{
blas
.
GEMM
(
CblasNoTrans
,
CblasNoTrans
,
1
,
D4
,
D
,
static_cast
<
T
>
(
1
),
prev_hidden_data
,
D
,
lstm_w_data
,
D4
,
static_cast
<
T
>
(
1
),
lstm_out_data
,
D4
);
}
// since input is 1xM, so can use add bias
blas
.
VADD
(
D4
,
lstm_b_data
,
lstm_out_data
,
lstm_out_data
);
// gate act: sigmoid
act_gate
(
D3
,
lstm_out_data
,
lstm_out_data
);
// candicate act: tanh
act_cand
(
D
,
lstm_out_data
+
D3
,
lstm_out_data
+
D3
);
// a = forget * prev_cell
blas
.
VMUL
(
D
,
lstm_out_data
,
prev_cell_data
,
lstm_out_data
);
// b = input * tilde
blas
.
VMUL
(
D
,
lstm_out_data
+
D
,
lstm_out_data
+
D3
,
lstm_out_data
+
D
);
// cell_out = a + b
blas
.
VADD
(
D
,
lstm_out_data
,
lstm_out_data
+
D
,
cur_cell_out_data
);
// state act tanh(cell_out) * output_gate
act_cell
(
D
,
cur_cell_out_data
,
lstm_out_data
);
blas
.
VMUL
(
D
,
lstm_out_data
,
lstm_out_data
+
D2
,
cur_hidden_out_data
);
prev_hidden_data
=
cur_hidden_out_data
;
prev_cell_data
=
cur_cell_out_data
;
cur_cell_out_data
=
cur_cell_out_data
+
D
;
cur_hidden_out_data
=
cur_hidden_out_data
+
D
;
}
cur_x_data
=
cur_x_data
+
seq_len
*
M
;
cur_atten_x_data
=
cur_atten_x_data
+
seq_len
;
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
attention_lstm
,
ops
::
AttentionLSTMOp
,
ops
::
AttentionLSTMOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OP_CPU_KERNEL
(
attention_lstm
,
ops
::
AttentionLSTMKernel
<
float
>
,
ops
::
AttentionLSTMKernel
<
double
>
);
paddle/fluid/operators/attention_lstm_op.h
0 → 100644
浏览文件 @
f0f06992
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
using
LoDTensor
=
framework
::
LoDTensor
;
using
Tensor
=
framework
::
Tensor
;
class
AttentionLSTMOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
;
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
};
class
AttentionLSTMOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
;
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/fusion_lstm_op.h
浏览文件 @
f0f06992
...
...
@@ -13,7 +13,6 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
// #include <string>
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
...
...
paddle/fluid/operators/math/blas.h
浏览文件 @
f0f06992
...
...
@@ -90,6 +90,11 @@ class Blas {
void
GEMM
(
bool
transA
,
bool
transB
,
int
M
,
int
N
,
int
K
,
T
alpha
,
const
T
*
A
,
int
lda
,
const
T
*
B
,
int
ldb
,
T
beta
,
T
*
C
,
int
ldc
)
const
;
template
<
typename
T
>
void
GEMM
(
CBLAS_TRANSPOSE
transA
,
CBLAS_TRANSPOSE
transB
,
int
M
,
int
N
,
int
K
,
T
alpha
,
const
T
*
A
,
int
lda
,
const
T
*
B
,
int
ldb
,
T
beta
,
T
*
C
,
int
ldc
)
const
;
#ifdef PADDLE_WITH_MKLML
template
<
typename
T
>
T
*
GEMM_ALLOC
(
const
CBLAS_IDENTIFIER
id
,
const
int
M
,
const
int
N
,
...
...
@@ -109,6 +114,10 @@ class Blas {
void
GEMM_FREE
(
T
*
data
)
const
;
#endif
template
<
typename
T
>
void
MatMul
(
const
int
M
,
const
int
N
,
const
int
K
,
const
T
*
A
,
const
T
*
B
,
T
*
C
)
const
;
template
<
typename
T
>
void
MatMul
(
const
framework
::
Tensor
&
mat_a
,
bool
trans_a
,
const
framework
::
Tensor
&
mat_b
,
bool
trans_b
,
T
alpha
,
...
...
@@ -140,10 +149,19 @@ class Blas {
template
<
typename
T
>
void
VCOPY
(
int
n
,
const
T
*
x
,
T
*
y
)
const
;
template
<
typename
T
>
void
VEXP
(
int
n
,
const
T
*
x
,
T
*
y
)
const
;
template
<
typename
T
>
void
GEMV
(
bool
trans_a
,
int
M
,
int
N
,
T
alpha
,
const
T
*
A
,
const
T
*
B
,
T
beta
,
T
*
C
)
const
;
template
<
typename
T
>
T
DOT
(
int
n
,
const
T
*
x
,
const
T
*
y
)
const
;
template
<
typename
T
>
void
SCAL
(
int
n
,
const
T
a
,
T
*
x
)
const
;
template
<
typename
T
>
void
BatchedGEMM
(
CBLAS_TRANSPOSE
transA
,
CBLAS_TRANSPOSE
transB
,
int
M
,
int
N
,
int
K
,
T
alpha
,
const
T
*
A
,
const
T
*
B
,
T
beta
,
T
*
C
,
...
...
@@ -215,11 +233,26 @@ class BlasT : private Blas<DeviceContext> {
Base
()
->
template
VCOPY
<
T
>(
args
...);
}
template
<
typename
...
ARGS
>
void
VEXP
(
ARGS
...
args
)
const
{
Base
()
->
template
VEXP
<
T
>(
args
...);
}
template
<
typename
...
ARGS
>
void
GEMV
(
ARGS
...
args
)
const
{
Base
()
->
template
GEMV
<
T
>(
args
...);
}
template
<
typename
...
ARGS
>
T
DOT
(
ARGS
...
args
)
const
{
return
Base
()
->
template
DOT
<
T
>(
args
...);
}
template
<
typename
...
ARGS
>
void
SCAL
(
ARGS
...
args
)
const
{
Base
()
->
template
SCAL
<
T
>(
args
...);
}
template
<
typename
...
ARGS
>
void
BatchedGEMM
(
ARGS
...
args
)
const
{
Base
()
->
template
BatchedGEMM
<
T
>(
args
...);
...
...
paddle/fluid/operators/math/blas_impl.h
浏览文件 @
f0f06992
...
...
@@ -73,6 +73,16 @@ struct CBlas<float> {
platform
::
dynload
::
cblas_sgemv
(
args
...);
}
template
<
typename
...
ARGS
>
static
float
DOT
(
ARGS
...
args
)
{
return
platform
::
dynload
::
cblas_sdot
(
args
...);
}
template
<
typename
...
ARGS
>
static
void
SCAL
(
ARGS
...
args
)
{
platform
::
dynload
::
cblas_sscal
(
args
...);
}
template
<
typename
...
ARGS
>
static
void
GEMM_BATCH
(
ARGS
...
args
)
{
platform
::
dynload
::
cblas_sgemm_batch
(
args
...);
...
...
@@ -87,6 +97,11 @@ struct CBlas<float> {
static
void
VMUL
(
ARGS
...
args
)
{
platform
::
dynload
::
vsMul
(
args
...);
}
template
<
typename
...
ARGS
>
static
void
VEXP
(
ARGS
...
args
)
{
platform
::
dynload
::
vsExp
(
args
...);
}
};
template
<
>
...
...
@@ -138,6 +153,16 @@ struct CBlas<double> {
platform
::
dynload
::
cblas_dgemv
(
args
...);
}
template
<
typename
...
ARGS
>
static
double
DOT
(
ARGS
...
args
)
{
return
platform
::
dynload
::
cblas_ddot
(
args
...);
}
template
<
typename
...
ARGS
>
static
void
SCAL
(
ARGS
...
args
)
{
platform
::
dynload
::
cblas_dscal
(
args
...);
}
template
<
typename
...
ARGS
>
static
void
GEMM_BATCH
(
ARGS
...
args
)
{
platform
::
dynload
::
cblas_dgemm_batch
(
args
...);
...
...
@@ -152,6 +177,11 @@ struct CBlas<double> {
static
void
VMUL
(
ARGS
...
args
)
{
platform
::
dynload
::
vdMul
(
args
...);
}
template
<
typename
...
ARGS
>
static
void
VEXP
(
ARGS
...
args
)
{
platform
::
dynload
::
vdExp
(
args
...);
}
};
#else
...
...
@@ -210,6 +240,9 @@ struct CBlas<platform::float16> {
PADDLE_THROW
(
"float16 SMM_GEMM not supported on CPU"
);
}
static
void
VMUL
(...)
{
PADDLE_THROW
(
"float16 VMUL not supported on CPU"
);
}
static
void
VEXP
(...)
{
PADDLE_THROW
(
"float16 VEXP not supported on CPU"
);
}
static
void
DOT
(...)
{
PADDLE_THROW
(
"float16 DOT not supported on CPU"
);
};
static
void
SCAL
(...)
{
PADDLE_THROW
(
"float16 SCAL not supported on CPU"
);
};
#ifdef PADDLE_WITH_MKLML
static
void
GEMM_BATCH
(...)
{
PADDLE_THROW
(
"float16 GEMM_BATCH not supported on CPU"
);
...
...
@@ -217,64 +250,6 @@ struct CBlas<platform::float16> {
#endif
};
template
<
typename
T
>
inline
bool
UseXSMM
(
const
int
&
m
,
const
int
&
n
,
const
int
&
k
,
bool
transa
,
bool
transb
,
const
T
&
alpha
,
const
T
&
beta
)
{
#ifdef PADDLE_WITH_LIBXSMM
// Refer to https://github.com/hfp/libxsmm/blob/master/README.md
// But the threshold is custom
constexpr
int
LIBXSMM_THRESHOLD
=
20
*
20
*
20
;
if
(
m
*
n
*
k
>
LIBXSMM_THRESHOLD
||
transa
||
transb
||
std
::
abs
<
T
>
(
alpha
-
static_cast
<
T
>
(
1
)
>
std
::
numeric_limits
<
T
>::
epsilon
())
||
std
::
abs
<
T
>
(
beta
)
>
std
::
numeric_limits
<
T
>::
epsilon
())
{
return
false
;
}
else
{
return
true
;
}
#endif
return
false
;
}
template
<
>
inline
bool
UseXSMM
<
platform
::
float16
>
(
const
int
&
m
,
const
int
&
n
,
const
int
&
k
,
bool
transa
,
bool
transb
,
const
platform
::
float16
&
alpha
,
const
platform
::
float16
&
beta
)
{
return
false
;
}
template
<
typename
T
>
inline
void
GEMM_WARP
(
CBLAS_ORDER
order
,
CBLAS_TRANSPOSE
transA
,
CBLAS_TRANSPOSE
transB
,
int
M
,
int
N
,
int
K
,
T
alpha
,
const
T
*
A
,
int
lda
,
const
T
*
B
,
int
ldb
,
T
beta
,
T
*
C
,
int
ldc
)
{
#ifdef PADDLE_WITH_LIBXSMM
if
(
UseXSMM
<
T
>
(
M
,
N
,
K
,
transA
!=
CblasNoTrans
,
transB
!=
CblasNoTrans
,
alpha
,
beta
))
{
// Note: SMM use ColMajor
const
char
transa
=
'N'
;
const
char
transb
=
'N'
;
CBlas
<
T
>::
SMM_GEMM
(
&
transa
,
&
transb
,
&
N
,
&
M
,
&
K
,
&
alpha
,
B
,
&
ldb
,
A
,
&
lda
,
&
beta
,
C
,
&
ldc
);
return
;
}
#endif
#ifdef PADDLE_MKL_SPLIT_GEMM
constexpr
int
bs
=
2
;
if
(
M
%
bs
==
0
&&
transA
==
CblasNoTrans
&&
transB
==
CblasNoTrans
)
{
for
(
int
off
=
0
;
off
<
M
;
off
+=
bs
)
{
CBlas
<
T
>::
GEMM
(
CblasRowMajor
,
CblasNoTrans
,
CblasNoTrans
,
bs
,
N
,
K
,
alpha
,
A
+
off
*
lda
,
lda
,
B
,
ldb
,
beta
,
C
+
off
*
ldb
,
ldc
);
}
return
;
}
#endif
CBlas
<
T
>::
GEMM
(
CblasRowMajor
,
transA
,
transB
,
M
,
N
,
K
,
alpha
,
A
,
lda
,
B
,
ldb
,
beta
,
C
,
ldc
);
}
#ifdef PADDLE_WITH_MKLML
template
<
>
template
<
typename
T
>
...
...
@@ -319,8 +294,8 @@ void Blas<platform::CPUDeviceContext>::GEMM(CBLAS_TRANSPOSE transA,
int
lda
=
(
transA
==
CblasNoTrans
)
?
K
:
M
;
int
ldb
=
(
transB
==
CblasNoTrans
)
?
N
:
K
;
int
ldc
=
N
;
GEMM_WARP
<
T
>
(
CblasRowMajor
,
transA
,
transB
,
M
,
N
,
K
,
alpha
,
A
,
lda
,
B
,
ldb
,
beta
,
C
,
ldc
);
CBlas
<
T
>::
GEMM
(
CblasRowMajor
,
transA
,
transB
,
M
,
N
,
K
,
alpha
,
A
,
lda
,
B
,
ldb
,
beta
,
C
,
ldc
);
}
template
<
>
...
...
@@ -329,9 +304,20 @@ void Blas<platform::CPUDeviceContext>::GEMM(bool transA, bool transB, int M,
int
N
,
int
K
,
T
alpha
,
const
T
*
A
,
int
lda
,
const
T
*
B
,
int
ldb
,
T
beta
,
T
*
C
,
int
ldc
)
const
{
GEMM_WARP
<
T
>
(
CblasRowMajor
,
transA
==
false
?
CblasNoTrans
:
CblasTrans
,
transB
==
false
?
CblasNoTrans
:
CblasTrans
,
M
,
N
,
K
,
alpha
,
A
,
lda
,
B
,
ldb
,
beta
,
C
,
ldc
);
CBlas
<
T
>::
GEMM
(
CblasRowMajor
,
transA
==
false
?
CblasNoTrans
:
CblasTrans
,
transB
==
false
?
CblasNoTrans
:
CblasTrans
,
M
,
N
,
K
,
alpha
,
A
,
lda
,
B
,
ldb
,
beta
,
C
,
ldc
);
}
template
<
>
template
<
typename
T
>
void
Blas
<
platform
::
CPUDeviceContext
>::
GEMM
(
CBLAS_TRANSPOSE
transA
,
CBLAS_TRANSPOSE
transB
,
int
M
,
int
N
,
int
K
,
T
alpha
,
const
T
*
A
,
int
lda
,
const
T
*
B
,
int
ldb
,
T
beta
,
T
*
C
,
int
ldc
)
const
{
CBlas
<
T
>::
GEMM
(
CblasRowMajor
,
transA
,
transB
,
M
,
N
,
K
,
alpha
,
A
,
lda
,
B
,
ldb
,
beta
,
C
,
ldc
);
}
template
<
typename
DeviceContext
>
...
...
@@ -399,6 +385,47 @@ void Blas<platform::CPUDeviceContext>::VMUL(int n, const T *x, const T *y,
#endif
}
template
<
>
template
<
typename
T
>
void
Blas
<
platform
::
CPUDeviceContext
>::
VEXP
(
int
n
,
const
T
*
x
,
T
*
y
)
const
{
#ifdef PADDLE_WITH_MKLML
CBlas
<
T
>::
VEXP
(
n
,
x
,
y
);
#else
// try to find if openblas support vexp
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
std
::
exp
(
x
[
i
]);
}
#endif
}
template
<
>
template
<
typename
T
>
T
Blas
<
platform
::
CPUDeviceContext
>::
DOT
(
int
n
,
const
T
*
x
,
const
T
*
y
)
const
{
#ifdef PADDLE_WITH_MKLML
return
CBlas
<
T
>::
DOT
(
n
,
x
,
1
,
y
,
1
);
#else
// try to find if openblas support cblas_dot
T
sum
=
0
;
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
sum
+=
x
[
i
]
*
y
[
i
];
}
return
sum
;
#endif
}
template
<
>
template
<
typename
T
>
void
Blas
<
platform
::
CPUDeviceContext
>::
SCAL
(
int
n
,
const
T
a
,
T
*
x
)
const
{
#ifdef PADDLE_WITH_MKLML
CBlas
<
T
>::
SCAL
(
n
,
a
,
x
,
1
);
#else
// try to find if openblas support cblas_scal
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
x
[
i
]
=
a
*
x
[
i
];
}
#endif
}
template
<
>
template
<
typename
T
>
void
Blas
<
platform
::
CPUDeviceContext
>::
GEMV
(
bool
trans_a
,
int
M
,
int
N
,
T
alpha
,
...
...
@@ -440,6 +467,42 @@ void Blas<platform::CPUDeviceContext>::BatchedGEMM(
#endif
}
template
<
typename
DeviceContext
>
template
<
typename
T
>
void
Blas
<
DeviceContext
>::
MatMul
(
const
int
M
,
const
int
N
,
const
int
K
,
const
T
*
A
,
const
T
*
B
,
T
*
C
)
const
{
this
->
template
GEMM
<
T
>(
CblasRowMajor
,
CblasNoTrans
,
CblasNoTrans
,
M
,
N
,
K
,
static_cast
<
T
>
(
1
),
A
,
K
,
B
,
N
,
static_cast
<
T
>
(
0
),
C
,
N
);
}
template
<
>
template
<
typename
T
>
void
Blas
<
platform
::
CPUDeviceContext
>::
MatMul
(
const
int
M
,
const
int
N
,
const
int
K
,
const
T
*
A
,
const
T
*
B
,
T
*
C
)
const
{
#ifdef PADDLE_WITH_LIBXSMM
// Refer to https://github.com/hfp/libxsmm/blob/master/README.md
// But the threshold is custom constexpr int LIBXSMM_THRESHOLD = 20 * 20 * 20;
// Since the matrix is very small,
// so the unit of calculation is already very fast,
// and the if( M*N*K < LIBXSMM_THRESHOLD) would be overhead,
// use xsmm directly.
// Note: SMM use ColMajor
const
char
transa
=
'N'
;
const
char
transb
=
'N'
;
const
T
alpha
=
static_cast
<
T
>
(
1
);
const
T
beta
=
static_cast
<
T
>
(
0
);
CBlas
<
T
>::
SMM_GEMM
(
&
transa
,
&
transb
,
&
N
,
&
M
,
&
K
,
&
alpha
,
B
,
&
N
,
A
,
&
K
,
&
beta
,
C
,
&
N
);
return
;
#endif
CBlas
<
T
>::
GEMM
(
CblasRowMajor
,
CblasNoTrans
,
CblasNoTrans
,
M
,
N
,
K
,
static_cast
<
T
>
(
1
),
A
,
K
,
B
,
N
,
static_cast
<
T
>
(
0
),
C
,
N
);
}
template
<
typename
DeviceContext
>
template
<
typename
T
>
void
Blas
<
DeviceContext
>::
MatMul
(
const
framework
::
Tensor
&
mat_a
,
...
...
paddle/fluid/operators/math/cpu_vec.h
0 → 100644
浏览文件 @
f0f06992
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include "paddle/fluid/platform/cpu_info.h"
namespace
paddle
{
namespace
operators
{
namespace
math
{
#define SIGMOID_THRESHOLD_MIN -40.0
#define SIGMOID_THRESHOLD_MAX 13.0
#define EXP_MAX_INPUT 40.0
template
<
typename
T
>
inline
T
sigmoid
(
T
x
)
{
return
1.
/
(
1.
+
exp
(
-
x
));
}
template
<
typename
T
>
inline
T
tanh
(
T
x
)
{
return
2.
*
sigmoid
(
2.
*
x
)
-
1.
;
}
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
=
platform
::
jit
::
isa_any
>
inline
void
vec_identity
(
const
int
n
,
const
T
*
x
,
T
*
y
)
{
// do nothing
return
;
}
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
=
platform
::
jit
::
isa_any
>
inline
void
vec_sigmoid
(
const
int
n
,
const
T
*
x
,
T
*
y
)
{
const
T
min
=
SIGMOID_THRESHOLD_MIN
;
const
T
max
=
SIGMOID_THRESHOLD_MAX
;
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
T
tmp
=
(
x
[
i
]
<
min
)
?
min
:
((
x
[
i
]
>
max
)
?
max
:
x
[
i
]);
y
[
i
]
=
1.0
/
(
1.0
+
std
::
exp
(
-
tmp
));
}
}
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
=
platform
::
jit
::
isa_any
>
inline
void
vec_tanh
(
const
int
n
,
const
T
*
x
,
T
*
y
)
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
tanh
<
T
>
(
x
[
i
]);
}
}
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
=
platform
::
jit
::
isa_any
>
inline
void
vec_relu
(
const
int
n
,
const
T
*
x
,
T
*
y
)
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
x
[
i
]
>
0
?
x
[
i
]
:
0
;
}
}
template
<
>
inline
void
vec_relu
<
float
,
platform
::
jit
::
avx2
>
(
const
int
n
,
const
float
*
x
,
float
*
y
)
{
// TODO(TJ): complete me
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
x
[
i
]
>
0
?
x
[
i
]
:
0
;
}
}
template
<
>
inline
void
vec_relu
<
float
,
platform
::
jit
::
avx
>
(
const
int
n
,
const
float
*
x
,
float
*
y
)
{
// TODO(TJ): complete me
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
x
[
i
]
>
0
?
x
[
i
]
:
0
;
}
}
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
=
platform
::
jit
::
isa_any
>
class
VecActivations
{
public:
std
::
function
<
void
(
const
int
,
const
T
*
,
T
*
)
>
operator
()(
const
std
::
string
&
type
)
{
if
(
type
==
"sigmoid"
)
{
return
vec_sigmoid
<
T
,
isa
>
;
}
else
if
(
type
==
"relu"
)
{
return
vec_relu
<
T
,
isa
>
;
}
else
if
(
type
==
"tanh"
)
{
return
vec_tanh
<
T
,
isa
>
;
}
else
if
(
type
==
"identity"
||
type
==
""
)
{
return
vec_identity
<
T
,
isa
>
;
}
PADDLE_THROW
(
"Not support type %s."
,
type
);
}
};
}
// namespace math
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/math/fc_compute.h
浏览文件 @
f0f06992
...
...
@@ -25,17 +25,25 @@ namespace math {
template
<
typename
DeviceContext
,
typename
T
>
inline
void
FCCompute
(
const
BlasT
<
DeviceContext
,
T
>&
blas
,
const
int
M
,
const
int
N
,
const
int
K
,
const
T
*
X
,
const
T
*
W
,
T
*
Y
,
const
T
*
B
=
NULL
)
{
blas
.
GEMM
(
CblasNoTrans
,
CblasNoTrans
,
M
,
N
,
K
,
static_cast
<
T
>
(
1
),
X
,
W
,
static_cast
<
T
>
(
0
),
Y
);
if
(
B
)
{
const
T
*
B
=
NULL
,
bool
relu
=
false
)
{
blas
.
MatMul
(
M
,
N
,
K
,
X
,
W
,
Y
);
if
(
B
==
NULL
)
{
return
;
}
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for if (FLAGS_paddle_num_threads > 1)
#endif
for
(
int
i
=
0
;
i
<
M
;
i
++
)
{
blas
.
AXPY
(
N
,
static_cast
<
T
>
(
1
),
B
,
Y
+
i
*
N
);
}
for
(
int
i
=
0
;
i
<
M
;
i
++
)
{
blas
.
AXPY
(
N
,
static_cast
<
T
>
(
1
),
B
,
Y
+
i
*
N
);
}
if
(
!
relu
)
{
return
;
}
// TODO(TJ): fuse relu
LOG
(
FATAL
)
<<
"Not implemented!"
;
}
}
// namespace math
...
...
paddle/fluid/platform/cpu_info.cc
浏览文件 @
f0f06992
...
...
@@ -103,15 +103,16 @@ size_t CUDAPinnedMaxChunkSize() {
return
CUDAPinnedMaxAllocSize
()
/
256
;
}
#ifdef PADDLE_WITH_XBYAK
namespace
jit
{
#ifdef PADDLE_WITH_XBYAK
static
Xbyak
::
util
::
Cpu
cpu
;
bool
MayIUse
(
const
cpu_isa_t
cpu_isa
)
{
using
namespace
Xbyak
::
util
;
// NOLINT
switch
(
cpu_isa
)
{
case
sse42
:
return
cpu
.
has
(
Cpu
::
tSSE42
);
case
avx
:
return
cpu
.
has
(
Cpu
::
tAVX
);
case
avx2
:
return
cpu
.
has
(
Cpu
::
tAVX2
);
case
avx512_common
:
...
...
@@ -134,8 +135,16 @@ bool MayIUse(const cpu_isa_t cpu_isa) {
}
return
false
;
}
#else
bool
MayIUse
(
const
cpu_isa_t
cpu_isa
)
{
if
(
cpu_isa
==
isa_any
)
{
return
true
;
}
else
{
return
false
;
}
}
#endif
}
// namespace jit
#endif
}
// namespace platform
}
// namespace paddle
paddle/fluid/platform/cpu_info.h
浏览文件 @
f0f06992
...
...
@@ -37,12 +37,11 @@ size_t CUDAPinnedMinChunkSize();
//! Get the maximum chunk size for buddy allocator.
size_t
CUDAPinnedMaxChunkSize
();
#ifdef PADDLE_WITH_XBYAK
namespace
jit
{
typedef
enum
{
isa_any
,
sse42
,
avx
,
avx2
,
avx512_common
,
avx512_core
,
...
...
@@ -55,7 +54,6 @@ typedef enum {
inline
bool
MayIUse
(
const
cpu_isa_t
cpu_isa
);
}
// namespace jit
#endif
}
// namespace platform
}
// namespace paddle
paddle/fluid/platform/dynload/mklml.h
浏览文件 @
f0f06992
...
...
@@ -66,10 +66,16 @@ extern void* mklml_dso_handle;
__macro(cblas_dgemm_free); \
__macro(cblas_sgemm_batch); \
__macro(cblas_dgemm_batch); \
__macro(cblas_sdot); \
__macro(cblas_ddot); \
__macro(cblas_sscal); \
__macro(cblas_dscal); \
__macro(vsAdd); \
__macro(vdAdd); \
__macro(vsMul); \
__macro(vdMul); \
__macro(vsExp); \
__macro(vdExp); \
__macro(MKL_Set_Num_Threads)
MKLML_ROUTINE_EACH
(
DECLARE_DYNAMIC_LOAD_MKLML_WRAP
);
...
...
python/paddle/fluid/tests/unittests/test_attention_lstm_op.py
0 → 100644
浏览文件 @
f0f06992
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
from
test_fusion_lstm_op
import
fc
,
ACTIVATION
from
test_softmax_op
import
stable_softmax
def
attention_lstm
(
x
,
# T x M
lod
,
# 1 x N
h0
,
# N x D
c0
,
# N x D
fcws
,
# (M+D) x 1, 1x1
fcbs
,
# 1 x 1, 1x1
w
,
# (M+D) x 4D
b
,
# 1 x 4D
act_gate
,
act_cell
,
act_cand
):
T
=
sum
(
lod
[
0
])
N
=
len
(
lod
[
0
])
M
=
x
.
shape
[
1
]
D
=
b
.
shape
[
1
]
/
4
assert
T
==
x
.
shape
[
0
]
assert
len
(
fcws
)
==
len
(
fcbs
)
hidden
=
[]
cell
=
[]
start_offset
=
0
for
bid
in
range
(
N
):
seq_len
=
lod
[
0
][
bid
]
xi
=
np
.
copy
(
x
[
start_offset
:
start_offset
+
seq_len
,
:]).
reshape
(
seq_len
,
M
)
prev_cell
=
np
.
copy
(
c0
[
bid
]).
reshape
([
1
,
D
])
prev_hidden
=
np
.
copy
(
h0
[
bid
]).
reshape
([
1
,
D
])
for
step
in
range
(
seq_len
):
expanded_cell
=
np
.
repeat
(
prev_cell
,
seq_len
,
axis
=
0
)
tmp
=
np
.
concatenate
((
xi
,
expanded_cell
),
axis
=
1
)
assert
tmp
.
shape
[
0
]
==
seq_len
assert
tmp
.
shape
[
1
]
==
M
+
D
for
fcid
in
range
(
len
(
fcbs
)):
tmp
=
fc
(
tmp
,
fcws
[
fcid
],
fcbs
[
fcid
])
tmp
=
ACTIVATION
[
'relu'
](
tmp
)
tmp
=
np
.
reshape
(
tmp
,
(
1
,
seq_len
))
tmp
=
stable_softmax
(
tmp
).
reshape
(
seq_len
,
1
)
lstmx
=
xi
*
tmp
# seq * M
lstmx
=
np
.
sum
(
lstmx
.
reshape
(
seq_len
,
M
),
axis
=
0
).
reshape
([
1
,
M
])
lstmin
=
np
.
concatenate
((
prev_hidden
,
lstmx
),
axis
=
1
)
lstmout
=
fc
(
lstmin
,
w
,
b
).
reshape
([
1
,
4
*
D
])
g_f
,
g_i
,
g_o
,
cand
=
np
.
split
(
lstmout
,
4
,
axis
=
1
)
g_f
=
act_gate
(
g_f
).
reshape
([
1
,
D
])
g_i
=
act_gate
(
g_i
).
reshape
([
1
,
D
])
g_o
=
act_gate
(
g_o
).
reshape
([
1
,
D
])
cand
=
act_cand
(
cand
).
reshape
([
1
,
D
])
cell_t
=
(
prev_cell
*
g_f
)
+
(
g_i
*
cand
)
hidden_t
=
g_o
*
act_cell
(
cell_t
)
hidden
.
append
(
hidden_t
.
flatten
())
cell
.
append
(
cell_t
.
flatten
())
prev_cell
=
cell_t
.
reshape
([
1
,
D
])
prev_hidden
=
hidden_t
.
reshape
([
1
,
D
])
start_offset
+=
seq_len
hidden
=
np
.
array
(
hidden
).
astype
(
'float32'
).
reshape
([
T
,
D
])
cell
=
np
.
array
(
cell
).
astype
(
'float32'
).
reshape
([
T
,
D
])
return
hidden
,
cell
class
TestAttentionLSTMOp
(
OpTest
):
def
set_conf
(
self
):
pass
def
setUp
(
self
):
self
.
op_type
=
'attention_lstm'
self
.
lod
=
[[
3
]]
self
.
M
=
30
self
.
D
=
15
self
.
has_initial_hidden
=
True
self
.
act_gate
=
'sigmoid'
self
.
act_cell
=
'tanh'
self
.
act_cand
=
'tanh'
self
.
set_conf
()
T
=
sum
(
self
.
lod
[
0
])
bs
=
len
(
self
.
lod
[
0
])
x
=
np
.
random
.
normal
(
size
=
(
T
,
self
.
M
)).
astype
(
'float32'
)
c0
=
np
.
random
.
normal
(
size
=
(
bs
,
self
.
D
)).
astype
(
'float32'
)
if
self
.
has_initial_hidden
:
h0
=
np
.
random
.
normal
(
size
=
(
bs
,
self
.
D
)).
astype
(
'float32'
)
else
:
h0
=
np
.
zeros
((
bs
,
self
.
D
)).
astype
(
'float32'
)
fcw1
=
np
.
random
.
normal
(
size
=
(
self
.
M
+
self
.
D
,
1
)).
astype
(
'float32'
)
fcb1
=
np
.
random
.
normal
(
size
=
(
1
,
1
)).
astype
(
'float32'
)
fcw2
=
np
.
random
.
normal
(
size
=
(
1
,
1
)).
astype
(
'float32'
)
fcb2
=
np
.
random
.
normal
(
size
=
(
1
,
1
)).
astype
(
'float32'
)
# lstm weight and bias
w
=
np
.
random
.
normal
(
size
=
(
self
.
M
+
self
.
D
,
self
.
D
*
4
)).
astype
(
'float32'
)
b
=
np
.
random
.
normal
(
size
=
(
1
,
self
.
D
*
4
)).
astype
(
'float32'
)
h
,
c
=
attention_lstm
(
x
,
self
.
lod
,
h0
,
c0
,
[
fcw1
,
fcw2
],
[
fcb1
,
fcb2
],
w
,
b
,
ACTIVATION
[
self
.
act_gate
],
ACTIVATION
[
self
.
act_cell
],
ACTIVATION
[
self
.
act_cand
])
self
.
inputs
=
{
'X'
:
(
x
,
self
.
lod
),
'C0'
:
c0
,
'AttentionWeight'
:
fcw1
,
'AttentionBias'
:
fcb1
,
'AttentionScalar'
:
fcw2
,
'AttentionScalarBias'
:
fcb2
,
'LSTMWeight'
:
w
,
'LSTMBias'
:
b
}
if
self
.
has_initial_hidden
:
self
.
inputs
[
'H0'
]
=
h0
self
.
outputs
=
{
'Hidden'
:
(
h
,
self
.
lod
),
'Cell'
:
(
c
,
self
.
lod
),
}
self
.
attrs
=
{
'gate_activation'
:
self
.
act_gate
,
'cell_activation'
:
self
.
act_cell
,
'candidate_activation'
:
self
.
act_cand
}
def
test_check_output
(
self
):
self
.
check_output
()
class
TestAttentionOpNonInit
(
TestAttentionLSTMOp
):
def
set_conf
(
self
):
self
.
has_initial_hidden
=
False
class
TestAttentionOpAct
(
TestAttentionLSTMOp
):
def
set_conf
(
self
):
self
.
M
=
3
self
.
D
=
2
self
.
act_gate
=
'relu'
self
.
act_cell
=
'tanh'
self
.
act_cand
=
'sigmoid'
class
TestAttentionOpMD1
(
TestAttentionLSTMOp
):
def
set_conf
(
self
):
self
.
M
=
36
self
.
D
=
8
class
TestAttentionOpMD2
(
TestAttentionLSTMOp
):
def
set_conf
(
self
):
self
.
M
=
8
self
.
D
=
8
class
TestAttentionOpMD3
(
TestAttentionLSTMOp
):
def
set_conf
(
self
):
self
.
M
=
15
self
.
D
=
30
class
TestAttentionOpBS1
(
TestAttentionLSTMOp
):
def
set_conf
(
self
):
self
.
lod
=
[[
5
]]
self
.
M
=
16
self
.
D
=
32
class
TestAttentionOpBS2
(
TestAttentionLSTMOp
):
def
set_conf
(
self
):
self
.
lod
=
[[
3
,
6
]]
class
TestAttentionOpBS5
(
TestAttentionLSTMOp
):
def
set_conf
(
self
):
self
.
lod
=
[[
3
,
2
,
4
,
7
,
5
]]
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录