Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
f0805212
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f0805212
编写于
11月 29, 2022
作者:
C
ccrrong
提交者:
GitHub
11月 29, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
remove pool3d from fluid (#48455)
* remove pool3d
上级
7078c1e1
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
17 addition
and
610 deletion
+17
-610
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+0
-241
python/paddle/fluid/tests/unittests/ir/inference/test_trt_pool3d_op.py
.../fluid/tests/unittests/ir/inference/test_trt_pool3d_op.py
+17
-67
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+0
-14
python/paddle/fluid/tests/unittests/test_pool3d_op.py
python/paddle/fluid/tests/unittests/test_pool3d_op.py
+0
-288
未找到文件。
python/paddle/fluid/layers/nn.py
浏览文件 @
f0805212
...
...
@@ -71,7 +71,6 @@ __all__ = [
'conv2d'
,
'softmax'
,
'pool2d'
,
'pool3d'
,
'batch_norm'
,
'reduce_mean'
,
'reduce_all'
,
...
...
@@ -1895,246 +1894,6 @@ def pool2d(
return
pool_out
@
templatedoc
()
def
pool3d
(
input
,
pool_size
=-
1
,
pool_type
=
"max"
,
pool_stride
=
1
,
pool_padding
=
0
,
global_pooling
=
False
,
use_cudnn
=
True
,
ceil_mode
=
False
,
name
=
None
,
exclusive
=
True
,
data_format
=
"NCDHW"
,
):
"""
${comment}
Args:
input (Variable): The input tensor of pooling operator, which is a 5-D tensor with
shape [N, C, D, H, W]. The format of
input tensor is `"NCDHW"` or `"NDHWC"`, where `N` is batch size, `C` is
the number of channels, `D` is the depth of the feature,
`H` is the height of the feature, and `W` is the width
of the feature.
pool_size (int|list|tuple): The pool kernel size. If pool kernel size
is a tuple or list, it must contain three integers,
(pool_size_Depth, pool_size_Height, pool_size_Width).
Otherwise, the pool kernel size will be the cube of an int.
pool_type (string): ${pooling_type_comment}
pool_stride (string|int|list|tuple)): The pool padding. If `pool_padding` is a string, either 'VALID' or
'SAME' which is the padding algorithm. If pool stride size is a tuple or list,
it must contain three integers, `[stride_Depth, stride_Height, stride_Width]`.
Otherwise, the pool stride size will be a cube of an int.
pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple or list,
it could be in three forms: `[pad_depth, pad_height, pad_width]` or
`[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
and when `data_format` is `"NCDHW"`, `pool_padding` can be in the form
`[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
when `data_format` is `"NDHWC"`, `pool_padding` can be in the form
`[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
global_pooling (bool): ${global_pooling_comment}
use_cudnn (bool): ${use_cudnn_comment}
ceil_mode (bool): ${ceil_mode_comment}
name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
exclusive (bool): Whether to exclude padding points in average pooling
mode, default is true.
data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
`[batch_size, input_channels, input_depth, input_height, input_width]`.
Returns:
Variable: The output tensor of pooling result. The data type is same as input tensor.
Raises:
ValueError: If `pool_type` is not "max" nor "avg".
ValueError: If `global_pooling` is False and `pool_size` is -1.
TypeError: If `use_cudnn` is not a bool value.
ValueError: If `data_format` is not "NCDHW" or "NDHWC".
ValueError: If `pool_padding` is a string, but not "SAME" or "VALID".
ValueError: If `pool_padding` is "VALID", but `ceil_mode` is True.
ValueError: If `pool_padding` is a list or tuple, but the elements in the batch or channel dimensions are non-zero.
ShapeError: If the input is not a 4-D or 5-D Tensor.
ShapeError: If the dimension of input minus the size of `pool_stride` is not 2.
ShapeError: If the size of `pool_size` and `pool_stride` is not equal.
ShapeError: If the output's shape calculated is not greater than 0.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle
paddle.enable_static()
data = fluid.data(name='data', shape=[None, 3, 32, 32, 32], dtype='float32')
# max pool3d
pool3d = fluid.layers.pool3d(
input = data,
pool_size = 2,
pool_type = "max",
pool_stride = 1,
global_pooling=False)
# average pool3d
pool3d = fluid.layers.pool3d(
input = data,
pool_size = 2,
pool_type = "avg",
pool_stride = 1,
global_pooling=False)
# global average pool3d
pool3d = fluid.layers.pool3d(
input = data,
pool_size = 2,
pool_type = "avg",
pool_stride = 1,
global_pooling=True)
# example 1:
# Attr(pool_padding) is a list with 6 elements, Attr(data_format) is "NCDHW".
out_1 = fluid.layers.pool3d(
input = data,
pool_size = 2,
pool_type = "avg",
pool_stride = 1,
pool_padding = [1, 2, 1, 0, 1, 2],
global_pooling = False,
data_format = "NCDHW")
# example 2:
# Attr(pool_padding) is a string, Attr(data_format) is "NCDHW".
out_2 = fluid.layers.pool3d(
input = data,
pool_size = 3,
pool_type = "avg",
pool_stride = 1,
pool_padding = "VALID",
global_pooling = False,
data_format = "NCDHW")
"""
if
pool_type
not
in
[
"max"
,
"avg"
]:
raise
ValueError
(
"Unknown Attr(pool_type): '%s'. It can only be 'max' or 'avg'."
,
str
(
pool_type
),
)
if
global_pooling
is
False
and
pool_size
==
-
1
:
raise
ValueError
(
"When Attr(global_pooling) is False, Attr(pool_size) must be passed "
"and be a valid value. Received Attr(pool_size): %s."
%
str
(
pool_size
)
)
if
not
isinstance
(
use_cudnn
,
bool
):
raise
TypeError
(
"Attr(use_cudnn) should be True or False. Received "
"Attr(use_cudnn): %s. "
%
str
(
use_cudnn
)
)
if
data_format
not
in
[
"NCDHW"
,
"NDHWC"
]:
raise
ValueError
(
"Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
"Attr(data_format): %s"
%
str
(
data_format
)
)
pool_size
=
utils
.
convert_to_list
(
pool_size
,
3
,
'pool_size'
)
pool_stride
=
utils
.
convert_to_list
(
pool_stride
,
3
,
'pool_stride'
)
def
update_padding
(
padding
,
data_format
):
def
is_list_or_tuple
(
ele
):
if
isinstance
(
ele
,
(
list
,
tuple
)):
return
True
return
False
if
is_list_or_tuple
(
padding
)
and
len
(
padding
)
==
5
:
if
is_list_or_tuple
(
padding
[
0
])
and
(
data_format
==
"NCDHW"
):
if
not
(
padding
[
0
]
==
[
0
,
0
]
and
padding
[
1
]
==
[
0
,
0
]):
raise
ValueError
(
"Non-zero pool_padding(%s) in the batch or channel dimensions "
"is not supported."
%
str
(
padding
)
)
padding
=
padding
[
2
:
5
]
padding
=
[
ele
for
a_list
in
padding
for
ele
in
a_list
]
elif
is_list_or_tuple
(
padding
[
0
])
and
(
data_format
==
"NDHWC"
):
if
not
(
padding
[
0
]
==
[
0
,
0
]
and
padding
[
4
]
==
[
0
,
0
]):
raise
ValueError
(
"Non-zero pool_padding(%s) in the batch or channel dimensions "
"is not supported."
%
str
(
padding
)
)
padding
=
padding
[
1
:
4
]
padding
=
[
ele
for
a_list
in
padding
for
ele
in
a_list
]
padding
=
utils
.
convert_to_list
(
padding
,
6
,
'padding'
)
if
utils
.
_is_symmetric_padding
(
padding
,
3
):
padding
=
[
padding
[
0
],
padding
[
2
],
padding
[
4
]]
elif
is_list_or_tuple
(
padding
)
and
len
(
padding
)
==
6
:
padding
=
utils
.
convert_to_list
(
padding
,
6
,
'padding'
)
if
utils
.
_is_symmetric_padding
(
padding
,
3
):
padding
=
[
padding
[
0
],
padding
[
2
],
padding
[
4
]]
else
:
padding
=
utils
.
convert_to_list
(
padding
,
3
,
'padding'
)
return
padding
padding_algorithm
=
"EXPLICIT"
if
isinstance
(
pool_padding
,
str
):
pool_padding
=
pool_padding
.
upper
()
if
pool_padding
not
in
[
"SAME"
,
"VALID"
]:
raise
ValueError
(
"Unknown Attr(pool_padding): '%s'. It can only be 'SAME' or 'VALID'."
%
str
(
pool_padding
)
)
if
pool_padding
==
"VALID"
:
padding_algorithm
=
"VALID"
pool_padding
=
[
0
,
0
,
0
]
if
ceil_mode
!=
False
:
raise
ValueError
(
"When Attr(pool_padding) is
\"
VALID
\"
, ceil_mode must be False. "
"Received ceil_mode: True."
)
elif
pool_padding
==
"SAME"
:
padding_algorithm
=
"SAME"
pool_padding
=
[
0
,
0
,
0
]
pool_padding
=
update_padding
(
pool_padding
,
data_format
)
op_type
=
"pool3d"
helper
=
LayerHelper
(
op_type
,
**
locals
())
dtype
=
helper
.
input_dtype
()
pool_out
=
helper
.
create_variable_for_type_inference
(
dtype
)
helper
.
append_op
(
type
=
op_type
,
inputs
=
{
"X"
:
input
},
outputs
=
{
"Out"
:
pool_out
},
attrs
=
{
"pooling_type"
:
pool_type
,
"ksize"
:
pool_size
,
"global_pooling"
:
global_pooling
,
"strides"
:
pool_stride
,
"paddings"
:
pool_padding
,
"padding_algorithm"
:
padding_algorithm
,
"use_cudnn"
:
use_cudnn
,
"ceil_mode"
:
ceil_mode
,
"use_mkldnn"
:
False
,
"exclusive"
:
exclusive
,
"data_format"
:
data_format
,
},
)
return
pool_out
def
batch_norm
(
input
,
act
=
None
,
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_pool3d_op.py
浏览文件 @
f0805212
...
...
@@ -37,7 +37,6 @@ class TensorRTPool3dTest(InferencePassTest):
self
.
pool_type
=
'max'
self
.
pool_stride
=
1
self
.
pool_padding
=
0
self
.
global_pooling
=
False
self
.
ceil_mode
=
False
self
.
exclusive
=
False
self
.
enable_trt
=
True
...
...
@@ -64,16 +63,23 @@ class TensorRTPool3dTest(InferencePassTest):
shape
=
[
-
1
,
self
.
channel
,
self
.
depth
,
self
.
height
,
self
.
width
],
dtype
=
'float32'
,
)
pool_out
=
fluid
.
layers
.
pool3d
(
input
=
data
,
pool_size
=
self
.
pool_size
,
pool_type
=
self
.
pool_type
,
pool_stride
=
self
.
pool_stride
,
pool_padding
=
self
.
pool_padding
,
global_pooling
=
self
.
global_pooling
,
ceil_mode
=
self
.
ceil_mode
,
exclusive
=
self
.
exclusive
,
)
if
self
.
pool_type
==
"max"
:
pool_out
=
paddle
.
nn
.
functional
.
max_pool3d
(
x
=
data
,
kernel_size
=
self
.
pool_size
,
stride
=
self
.
pool_stride
,
padding
=
self
.
pool_padding
,
ceil_mode
=
self
.
ceil_mode
,
)
else
:
pool_out
=
paddle
.
nn
.
functional
.
avg_pool3d
(
x
=
data
,
kernel_size
=
self
.
pool_size
,
stride
=
self
.
pool_stride
,
padding
=
self
.
pool_padding
,
ceil_mode
=
self
.
ceil_mode
,
exclusive
=
self
.
exclusive
,
)
# out = fluid.layers.batch_norm(pool_out, is_test=True)
self
.
fetch_list
=
[
pool_out
]
...
...
@@ -158,62 +164,6 @@ class TensorRTAvgPool3dTest(TensorRTPool3dTest):
self
.
pool_type
=
'avg'
self
.
pool_stride
=
1
self
.
pool_padding
=
0
self
.
global_pooling
=
False
self
.
ceil_mode
=
False
self
.
exclusive
=
False
class
TensorRTGlobalPool3dTest
(
TensorRTPool3dTest
):
def
set_extra_config
(
self
):
self
.
pool_size
=
2
self
.
pool_type
=
'max'
self
.
pool_stride
=
1
self
.
pool_padding
=
0
self
.
global_pooling
=
True
self
.
ceil_mode
=
False
self
.
exclusive
=
False
class
TensorRTCeilPool3dTest
(
TensorRTPool3dTest
):
def
set_extra_config
(
self
):
self
.
pool_size
=
2
self
.
pool_type
=
'max'
self
.
pool_stride
=
1
self
.
pool_padding
=
0
self
.
global_pooling
=
False
self
.
ceil_mode
=
True
self
.
exclusive
=
False
class
TensorRTExclusivePool3dTest
(
TensorRTPool3dTest
):
def
set_extra_config
(
self
):
self
.
pool_size
=
2
self
.
pool_type
=
'max'
self
.
pool_stride
=
1
self
.
pool_padding
=
0
self
.
global_pooling
=
False
self
.
ceil_mode
=
False
self
.
exclusive
=
True
class
TensorRTSamePaddingPool3dTest
(
InferencePassTest
):
def
set_extra_config
(
self
):
self
.
pool_size
=
2
self
.
pool_type
=
'max'
self
.
pool_stride
=
1
self
.
pool_padding
=
'SAME'
self
.
global_pooling
=
False
self
.
ceil_mode
=
False
self
.
exclusive
=
False
class
TensorRTValidPaddingPool3dTest
(
InferencePassTest
):
def
set_extra_config
(
self
):
self
.
pool_size
=
2
self
.
pool_type
=
'max'
self
.
pool_stride
=
1
self
.
pool_padding
=
'VALID'
self
.
global_pooling
=
False
self
.
ceil_mode
=
False
self
.
exclusive
=
False
...
...
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
f0805212
...
...
@@ -3178,20 +3178,6 @@ class TestBook(LayerTest):
x
,
pool_size
=
[
5
,
3
],
pool_stride
=
[
1
,
2
],
pool_padding
=
(
2
,
1
)
)
def
make_pool3d
(
self
):
with
program_guard
(
fluid
.
default_main_program
(),
fluid
.
default_startup_program
()
):
x
=
self
.
_get_data
(
name
=
'x'
,
shape
=
[
3
,
244
,
244
,
244
],
dtype
=
'float32'
)
return
layers
.
pool3d
(
x
,
pool_size
=
[
5
,
3
,
2
],
pool_stride
=
[
1
,
2
,
3
],
pool_padding
=
(
2
,
1
,
1
),
)
def
make_lstm_unit
(
self
):
with
program_guard
(
fluid
.
default_main_program
(),
fluid
.
default_startup_program
()
...
...
python/paddle/fluid/tests/unittests/test_pool3d_op.py
浏览文件 @
f0805212
...
...
@@ -18,7 +18,6 @@ import numpy as np
import
paddle
import
paddle.fluid.core
as
core
from
op_test
import
OpTest
import
paddle.fluid
as
fluid
def
adaptive_start_index
(
index
,
input_size
,
output_size
):
...
...
@@ -1027,292 +1026,5 @@ create_test_cudnn_padding_VALID_class(TestCase4_channel_last)
create_test_cudnn_padding_VALID_class
(
TestCase5_channel_last
)
# test API
class
TestPool3DAPI
(
unittest
.
TestCase
):
def
test_api
(
self
):
x_NDHWC
=
np
.
random
.
random
([
2
,
5
,
5
,
5
,
3
]).
astype
(
"float32"
)
x_NCDHW
=
np
.
random
.
random
([
2
,
3
,
5
,
5
,
5
]).
astype
(
"float32"
)
input_NDHWC
=
fluid
.
layers
.
data
(
name
=
"input_NDHWC"
,
shape
=
[
2
,
5
,
5
,
5
,
3
],
append_batch_size
=
False
,
dtype
=
"float32"
,
)
input_NCDHW
=
fluid
.
layers
.
data
(
name
=
"input_NCDHW"
,
shape
=
[
2
,
3
,
5
,
5
,
5
],
append_batch_size
=
False
,
dtype
=
"float32"
,
)
ksize
=
[
3
,
3
,
3
]
out_1
=
fluid
.
layers
.
pool3d
(
input
=
input_NDHWC
,
pool_size
=
ksize
,
pool_type
=
"max"
,
pool_padding
=
[
1
,
1
,
1
],
use_cudnn
=
False
,
data_format
=
"NDHWC"
,
)
out_2
=
fluid
.
layers
.
pool3d
(
input
=
input_NDHWC
,
pool_size
=
ksize
,
pool_type
=
"avg"
,
pool_padding
=
[[
0
,
0
],
[
1
,
1
],
[
1
,
1
],
[
1
,
1
],
[
0
,
0
]],
use_cudnn
=
False
,
data_format
=
"NDHWC"
,
)
out_3
=
fluid
.
layers
.
pool3d
(
input
=
input_NCDHW
,
pool_size
=
ksize
,
pool_type
=
"avg"
,
pool_padding
=
[[
0
,
0
],
[
0
,
0
],
[
1
,
1
],
[
1
,
1
],
[
1
,
1
]],
use_cudnn
=
False
,
data_format
=
"NCDHW"
,
)
out_4
=
fluid
.
layers
.
pool3d
(
input
=
input_NCDHW
,
pool_size
=
ksize
,
pool_type
=
"avg"
,
pool_padding
=
[
1
,
2
,
1
,
0
,
0
,
1
],
use_cudnn
=
False
,
data_format
=
"NCDHW"
,
)
# test VALID
out_5
=
fluid
.
layers
.
pool3d
(
input
=
input_NDHWC
,
pool_size
=
ksize
,
pool_type
=
"avg"
,
pool_padding
=
"VALID"
,
use_cudnn
=
False
,
data_format
=
"NDHWC"
,
)
out_6
=
fluid
.
layers
.
pool3d
(
input
=
input_NCDHW
,
pool_size
=
ksize
,
pool_type
=
"avg"
,
pool_padding
=
"VALID"
,
use_cudnn
=
False
,
data_format
=
"NCDHW"
,
)
# test SAME
out_7
=
fluid
.
layers
.
pool3d
(
input
=
input_NDHWC
,
pool_size
=
ksize
,
pool_stride
=
[
1
,
1
,
2
],
pool_type
=
"avg"
,
pool_padding
=
"SAME"
,
use_cudnn
=
False
,
data_format
=
"NDHWC"
,
)
out_8
=
fluid
.
layers
.
pool3d
(
input
=
input_NCDHW
,
pool_size
=
[
4
,
4
,
4
],
pool_type
=
"avg"
,
pool_padding
=
"SAME"
,
use_cudnn
=
False
,
data_format
=
"NCDHW"
,
)
exe
=
fluid
.
Executor
(
place
=
fluid
.
CPUPlace
())
[
res_1
,
res_2
,
res_3
,
res_4
,
res_5
,
res_6
,
res_7
,
res_8
]
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"input_NDHWC"
:
x_NDHWC
,
"input_NCDHW"
:
x_NCDHW
},
fetch_list
=
[
out_1
,
out_2
,
out_3
,
out_4
,
out_5
,
out_6
,
out_7
,
out_8
],
)
assert
np
.
allclose
(
res_1
,
pool3D_forward_naive
(
x
=
x_NDHWC
,
ksize
=
ksize
,
pool_type
=
"max"
,
strides
=
[
1
,
1
,
1
],
paddings
=
[
1
,
1
,
1
],
data_format
=
"NDHWC"
,
),
)
assert
np
.
allclose
(
res_2
,
pool3D_forward_naive
(
x
=
x_NDHWC
,
ksize
=
ksize
,
pool_type
=
"avg"
,
strides
=
[
1
,
1
,
1
],
paddings
=
[
1
,
1
,
1
,
1
,
1
,
1
],
data_format
=
"NDHWC"
,
),
)
assert
np
.
allclose
(
res_3
,
pool3D_forward_naive
(
x
=
x_NCDHW
,
ksize
=
ksize
,
pool_type
=
"avg"
,
strides
=
[
1
,
1
,
1
],
paddings
=
[
1
,
1
,
1
,
1
,
1
,
1
],
data_format
=
"NCDHW"
,
),
rtol
=
0.07
,
atol
=
1e-05
,
)
assert
np
.
allclose
(
res_4
,
pool3D_forward_naive
(
x
=
x_NCDHW
,
ksize
=
ksize
,
pool_type
=
"avg"
,
strides
=
[
1
,
1
,
1
],
paddings
=
[
1
,
2
,
1
,
0
,
0
,
1
],
data_format
=
"NCDHW"
,
),
rtol
=
0.07
,
atol
=
1e-05
,
)
# VALID
assert
np
.
allclose
(
res_5
,
pool3D_forward_naive
(
x
=
x_NDHWC
,
ksize
=
ksize
,
pool_type
=
"avg"
,
strides
=
[
1
,
1
,
1
],
paddings
=
[
10
,
20
],
padding_algorithm
=
"VALID"
,
data_format
=
"NDHWC"
,
),
)
assert
np
.
allclose
(
res_6
,
pool3D_forward_naive
(
x
=
x_NCDHW
,
ksize
=
ksize
,
pool_type
=
"avg"
,
strides
=
[
1
,
1
,
1
],
paddings
=
[
10
,
20
],
padding_algorithm
=
"VALID"
,
data_format
=
"NCDHW"
,
),
rtol
=
0.07
,
atol
=
1e-05
,
)
# SAME
assert
np
.
allclose
(
res_7
,
pool3D_forward_naive
(
x
=
x_NDHWC
,
ksize
=
ksize
,
pool_type
=
"avg"
,
strides
=
[
1
,
1
,
2
],
paddings
=
[
10
,
20
],
padding_algorithm
=
"SAME"
,
data_format
=
"NDHWC"
,
),
)
assert
np
.
allclose
(
res_8
,
pool3D_forward_naive
(
x
=
x_NCDHW
,
ksize
=
[
4
,
4
,
4
],
pool_type
=
"avg"
,
strides
=
[
1
,
1
,
1
],
paddings
=
[
10
,
20
],
padding_algorithm
=
"SAME"
,
data_format
=
"NCDHW"
,
),
rtol
=
0.07
,
atol
=
1e-05
,
)
class
TestPool3DAPI_Error
(
unittest
.
TestCase
):
def
test_api
(
self
):
input_NDHWC
=
fluid
.
layers
.
data
(
name
=
"input_NDHWC"
,
shape
=
[
2
,
5
,
5
,
5
,
3
],
append_batch_size
=
False
,
dtype
=
"float32"
,
)
ksize
=
[
3
,
3
,
3
]
# cudnn type error
def
run_1
():
out_1
=
fluid
.
layers
.
pool3d
(
input
=
input_NDHWC
,
pool_size
=
ksize
,
pool_type
=
"max"
,
pool_padding
=
[
1
,
1
,
1
],
use_cudnn
=
[
0
],
data_format
=
"NDHWC"
,
)
self
.
assertRaises
(
TypeError
,
run_1
)
# data_format value error
def
run_2
():
out_2
=
fluid
.
layers
.
pool3d
(
input
=
input_NDHWC
,
pool_size
=
ksize
,
pool_type
=
"max"
,
pool_padding
=
[
1
,
1
,
1
],
use_cudnn
=
False
,
data_format
=
"NDHWCC"
,
)
self
.
assertRaises
(
ValueError
,
run_2
)
# padding str value error
def
run_3
():
out_3
=
fluid
.
layers
.
pool3d
(
input
=
input_NDHWC
,
pool_size
=
ksize
,
pool_type
=
"max"
,
pool_padding
=
"VALIDSAME"
,
use_cudnn
=
False
,
data_format
=
"NDHWC"
,
)
self
.
assertRaises
(
ValueError
,
run_3
)
# padding str valid and ceil_mode value error
def
run_4
():
out_4
=
fluid
.
layers
.
pool3d
(
input
=
input_NDHWC
,
pool_size
=
ksize
,
pool_type
=
"max"
,
pool_padding
=
"VALID"
,
use_cudnn
=
False
,
ceil_mode
=
True
,
data_format
=
"NDHWC"
,
)
self
.
assertRaises
(
ValueError
,
run_4
)
# padding with 8 ele. value error
def
run_5
():
out_5
=
fluid
.
layers
.
pool3d
(
input
=
input_NDHWC
,
pool_size
=
ksize
,
pool_type
=
"max"
,
pool_padding
=
[[
1
,
1
],
[
0
,
0
],
[
0
,
0
],
[
1
,
1
],
[
1
,
1
]],
use_cudnn
=
False
,
data_format
=
"NDHWC"
,
)
self
.
assertRaises
(
ValueError
,
run_5
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录