Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
f06dd08d
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f06dd08d
编写于
3月 22, 2023
作者:
Y
Yuang Liu
提交者:
GitHub
3月 22, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
【AMP OP&Test】Support bf16 scatter and scatter_nd_add, add bf16/fp16 ut. (#51689)
上级
80472116
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
449 addition
and
31 deletion
+449
-31
paddle/phi/kernels/gpu/scatter_grad_kernel.cu
paddle/phi/kernels/gpu/scatter_grad_kernel.cu
+3
-1
paddle/phi/kernels/gpu/scatter_kernel.cu
paddle/phi/kernels/gpu/scatter_kernel.cu
+3
-1
paddle/phi/kernels/gpu/scatter_nd_add_grad_kernel.cu
paddle/phi/kernels/gpu/scatter_nd_add_grad_kernel.cu
+3
-1
paddle/phi/kernels/gpu/scatter_nd_add_kernel.cu
paddle/phi/kernels/gpu/scatter_nd_add_kernel.cu
+3
-1
python/paddle/fluid/tests/unittests/test_scatter_nd_op.py
python/paddle/fluid/tests/unittests/test_scatter_nd_op.py
+157
-8
python/paddle/fluid/tests/unittests/test_scatter_op.py
python/paddle/fluid/tests/unittests/test_scatter_op.py
+280
-19
未找到文件。
paddle/phi/kernels/gpu/scatter_grad_kernel.cu
浏览文件 @
f06dd08d
...
...
@@ -15,6 +15,7 @@
#include "paddle/phi/kernels/scatter_grad_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_utils.h"
#include "paddle/phi/kernels/funcs/gather.cu.h"
...
...
@@ -72,4 +73,5 @@ PD_REGISTER_KERNEL(scatter_grad,
double
,
int
,
int64_t
,
phi
::
dtype
::
float16
)
{}
phi
::
dtype
::
float16
,
phi
::
dtype
::
bfloat16
)
{}
paddle/phi/kernels/gpu/scatter_kernel.cu
浏览文件 @
f06dd08d
...
...
@@ -15,6 +15,7 @@
#include "paddle/phi/kernels/scatter_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_utils.h"
#include "paddle/phi/kernels/funcs/scatter.cu.h"
...
...
@@ -60,4 +61,5 @@ PD_REGISTER_KERNEL(scatter,
double
,
int
,
int64_t
,
phi
::
dtype
::
float16
)
{}
phi
::
dtype
::
float16
,
phi
::
dtype
::
bfloat16
)
{}
paddle/phi/kernels/gpu/scatter_nd_add_grad_kernel.cu
浏览文件 @
f06dd08d
...
...
@@ -15,6 +15,7 @@
#include "paddle/phi/kernels/scatter_nd_add_grad_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_utils.h"
#include "paddle/phi/kernels/funcs/gather.cu.h"
...
...
@@ -53,4 +54,5 @@ PD_REGISTER_KERNEL(scatter_nd_add_grad,
double
,
int64_t
,
int
,
phi
::
dtype
::
float16
)
{}
phi
::
dtype
::
float16
,
phi
::
dtype
::
bfloat16
)
{}
paddle/phi/kernels/gpu/scatter_nd_add_kernel.cu
浏览文件 @
f06dd08d
...
...
@@ -15,6 +15,7 @@
#include "paddle/phi/kernels/scatter_nd_add_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_utils.h"
#include "paddle/phi/kernels/funcs/scatter.cu.h"
...
...
@@ -56,4 +57,5 @@ PD_REGISTER_KERNEL(scatter_nd_add,
double
,
int64_t
,
int
,
phi
::
dtype
::
float16
)
{}
phi
::
dtype
::
float16
,
phi
::
dtype
::
bfloat16
)
{}
python/paddle/fluid/tests/unittests/test_scatter_nd_op.py
浏览文件 @
f06dd08d
...
...
@@ -15,10 +15,11 @@
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
from
op_test
import
OpTest
,
convert_float_to_uint16
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.fluid.dygraph.base
import
switch_to_static_graph
...
...
@@ -68,14 +69,27 @@ class TestScatterNdAddSimpleOp(OpTest):
def
setUp
(
self
):
self
.
op_type
=
"scatter_nd_add"
self
.
python_api
=
paddle
.
scatter_nd_add
ref_np
=
np
.
random
.
random
([
100
]).
astype
(
"float64"
)
self
.
_set_dtype
()
if
self
.
dtype
==
np
.
float64
:
target_dtype
=
"float64"
elif
self
.
dtype
==
np
.
float16
:
target_dtype
=
"float16"
else
:
target_dtype
=
"float32"
ref_np
=
np
.
random
.
random
([
100
]).
astype
(
target_dtype
)
index_np
=
np
.
random
.
randint
(
0
,
100
,
[
100
,
1
]).
astype
(
"int32"
)
updates_np
=
np
.
random
.
random
([
100
]).
astype
(
"float64"
)
updates_np
=
np
.
random
.
random
([
100
]).
astype
(
target_dtype
)
expect_np
=
numpy_scatter_nd_add
(
ref_np
.
copy
(),
index_np
,
updates_np
)
if
self
.
dtype
==
np
.
uint16
:
ref_np
=
convert_float_to_uint16
(
ref_np
)
updates_np
=
convert_float_to_uint16
(
updates_np
)
expect_np
=
convert_float_to_uint16
(
expect_np
)
self
.
inputs
=
{
'X'
:
ref_np
,
'Index'
:
index_np
,
'Updates'
:
updates_np
}
self
.
outputs
=
{
'Out'
:
expect_np
}
def
_set_dtype
(
self
):
self
.
dtype
=
np
.
float64
def
test_check_output
(
self
):
self
.
check_output
(
check_eager
=
True
)
...
...
@@ -83,6 +97,41 @@ class TestScatterNdAddSimpleOp(OpTest):
self
.
check_grad
([
'X'
,
'Updates'
],
'Out'
,
check_eager
=
True
)
class
TestScatterNdAddSimpleFP16Op
(
TestScatterNdAddSimpleOp
):
"""
A simple example
"""
def
_set_dtype
(
self
):
self
.
dtype
=
np
.
float16
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
()
or
not
core
.
is_bfloat16_supported
(
core
.
CUDAPlace
(
0
)),
"core is not complied with CUDA and not support the bfloat16"
,
)
class
TestScatterNdAddSimpleBF16Op
(
TestScatterNdAddSimpleOp
):
"""
A simple example
"""
def
_set_dtype
(
self
):
self
.
dtype
=
np
.
uint16
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
self
.
check_output_with_place
(
place
,
check_eager
=
True
)
def
test_check_grad
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
,
'Updates'
],
'Out'
,
check_eager
=
True
)
class
TestScatterNdAddWithEmptyIndex
(
OpTest
):
"""
Index has empty element
...
...
@@ -91,15 +140,30 @@ class TestScatterNdAddWithEmptyIndex(OpTest):
def
setUp
(
self
):
self
.
op_type
=
"scatter_nd_add"
self
.
python_api
=
paddle
.
scatter_nd_add
ref_np
=
np
.
random
.
random
((
10
,
10
)).
astype
(
"float64"
)
self
.
_set_dtype
()
if
self
.
dtype
==
np
.
float64
:
target_dtype
=
"float64"
elif
self
.
dtype
==
np
.
float16
:
target_dtype
=
"float16"
else
:
target_dtype
=
"float32"
ref_np
=
np
.
random
.
random
((
10
,
10
)).
astype
(
target_dtype
)
index_np
=
np
.
array
([[],
[]]).
astype
(
"int32"
)
updates_np
=
np
.
random
.
random
((
2
,
10
,
10
)).
astype
(
"float64"
)
updates_np
=
np
.
random
.
random
((
2
,
10
,
10
)).
astype
(
target_dtype
)
expect_np
=
numpy_scatter_nd_add
(
ref_np
.
copy
(),
index_np
,
updates_np
)
if
self
.
dtype
==
np
.
uint16
:
ref_np
=
convert_float_to_uint16
(
ref_np
)
updates_np
=
convert_float_to_uint16
(
updates_np
)
expect_np
=
convert_float_to_uint16
(
expect_np
)
self
.
inputs
=
{
'X'
:
ref_np
,
'Index'
:
index_np
,
'Updates'
:
updates_np
}
self
.
outputs
=
{
'Out'
:
expect_np
}
def
_set_dtype
(
self
):
self
.
dtype
=
np
.
float64
def
test_check_output
(
self
):
self
.
check_output
(
check_eager
=
True
)
...
...
@@ -107,6 +171,41 @@ class TestScatterNdAddWithEmptyIndex(OpTest):
self
.
check_grad
([
'X'
,
'Updates'
],
'Out'
,
check_eager
=
True
)
class
TestScatterNdAddWithEmptyIndexFP16
(
TestScatterNdAddWithEmptyIndex
):
"""
Index has empty element
"""
def
_set_dtype
(
self
):
self
.
dtype
=
np
.
float16
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
()
or
not
core
.
is_bfloat16_supported
(
core
.
CUDAPlace
(
0
)),
"core is not complied with CUDA and not support the bfloat16"
,
)
class
TestScatterNdAddWithEmptyIndexBF16
(
TestScatterNdAddWithEmptyIndex
):
"""
Index has empty element
"""
def
_set_dtype
(
self
):
self
.
dtype
=
np
.
uint16
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
self
.
check_output_with_place
(
place
,
check_eager
=
True
)
def
test_check_grad
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
,
'Updates'
],
'Out'
,
check_eager
=
True
)
class
TestScatterNdAddWithHighRankSame
(
OpTest
):
"""
Both Index and X have high rank, and Rank(Index) = Rank(X)
...
...
@@ -115,18 +214,33 @@ class TestScatterNdAddWithHighRankSame(OpTest):
def
setUp
(
self
):
self
.
op_type
=
"scatter_nd_add"
self
.
python_api
=
paddle
.
scatter_nd_add
self
.
_set_dtype
()
if
self
.
dtype
==
np
.
float64
:
target_dtype
=
"float64"
elif
self
.
dtype
==
np
.
float16
:
target_dtype
=
"float16"
else
:
target_dtype
=
"float32"
shape
=
(
3
,
2
,
2
,
1
,
10
)
ref_np
=
np
.
random
.
rand
(
*
shape
).
astype
(
"float64"
)
ref_np
=
np
.
random
.
rand
(
*
shape
).
astype
(
target_dtype
)
index_np
=
np
.
vstack
(
[
np
.
random
.
randint
(
0
,
s
,
size
=
100
)
for
s
in
shape
]
).
T
.
astype
(
"int32"
)
update_shape
=
judge_update_shape
(
ref_np
,
index_np
)
updates_np
=
np
.
random
.
rand
(
*
update_shape
).
astype
(
"float64"
)
updates_np
=
np
.
random
.
rand
(
*
update_shape
).
astype
(
target_dtype
)
expect_np
=
numpy_scatter_nd_add
(
ref_np
.
copy
(),
index_np
,
updates_np
)
if
self
.
dtype
==
np
.
uint16
:
ref_np
=
convert_float_to_uint16
(
ref_np
)
updates_np
=
convert_float_to_uint16
(
updates_np
)
expect_np
=
convert_float_to_uint16
(
expect_np
)
self
.
inputs
=
{
'X'
:
ref_np
,
'Index'
:
index_np
,
'Updates'
:
updates_np
}
self
.
outputs
=
{
'Out'
:
expect_np
}
def
_set_dtype
(
self
):
self
.
dtype
=
np
.
float64
def
test_check_output
(
self
):
self
.
check_output
(
check_eager
=
True
)
...
...
@@ -134,6 +248,41 @@ class TestScatterNdAddWithHighRankSame(OpTest):
self
.
check_grad
([
'X'
,
'Updates'
],
'Out'
,
check_eager
=
True
)
class
TestScatterNdAddWithHighRankSameFP16
(
TestScatterNdAddWithHighRankSame
):
"""
Both Index and X have high rank, and Rank(Index) = Rank(X)
"""
def
_set_dtype
(
self
):
self
.
dtype
=
np
.
float16
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
()
or
not
core
.
is_bfloat16_supported
(
core
.
CUDAPlace
(
0
)),
"core is not complied with CUDA and not support the bfloat16"
,
)
class
TestScatterNdAddWithHighRankSameBF16
(
TestScatterNdAddWithHighRankSame
):
"""
Both Index and X have high rank, and Rank(Index) = Rank(X)
"""
def
_set_dtype
(
self
):
self
.
dtype
=
np
.
uint16
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
self
.
check_output_with_place
(
place
,
check_eager
=
True
)
def
test_check_grad
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
,
'Updates'
],
'Out'
,
check_eager
=
True
)
class
TestScatterNdAddWithHighRankDiff
(
OpTest
):
"""
Both Index and X have high rank, and Rank(Index) < Rank(X)
...
...
python/paddle/fluid/tests/unittests/test_scatter_op.py
浏览文件 @
f06dd08d
...
...
@@ -16,7 +16,7 @@ import os
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
from
op_test
import
OpTest
,
convert_float_to_uint16
import
paddle
import
paddle.fluid
as
fluid
...
...
@@ -28,14 +28,23 @@ class TestScatterOp(OpTest):
def
setUp
(
self
):
self
.
op_type
=
"scatter"
self
.
python_api
=
paddle
.
scatter
ref_np
=
np
.
ones
((
3
,
50
)).
astype
(
"float32"
)
self
.
_set_dtype
()
target_dtype
=
"float16"
if
self
.
dtype
==
np
.
float16
else
"float32"
ref_np
=
np
.
ones
((
3
,
50
)).
astype
(
target_dtype
)
index_np
=
np
.
array
([
1
,
2
]).
astype
(
"int32"
)
updates_np
=
np
.
random
.
random
((
2
,
50
)).
astype
(
"float32"
)
updates_np
=
np
.
random
.
random
((
2
,
50
)).
astype
(
target_dtype
)
output_np
=
np
.
copy
(
ref_np
)
output_np
[
index_np
]
=
updates_np
if
self
.
dtype
==
np
.
uint16
:
ref_np
=
convert_float_to_uint16
(
ref_np
)
updates_np
=
convert_float_to_uint16
(
updates_np
)
output_np
=
convert_float_to_uint16
(
output_np
)
self
.
inputs
=
{
'X'
:
ref_np
,
'Ids'
:
index_np
,
'Updates'
:
updates_np
}
self
.
outputs
=
{
'Out'
:
output_np
}
def
_set_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
self
.
check_output
(
check_eager
=
False
)
...
...
@@ -43,19 +52,55 @@ class TestScatterOp(OpTest):
self
.
check_grad
([
"X"
,
"Updates"
],
"Out"
,
check_eager
=
False
)
class
TestScatterFP16Op
(
TestScatterOp
):
def
_set_dtype
(
self
):
self
.
dtype
=
np
.
float16
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
()
or
not
core
.
is_bfloat16_supported
(
core
.
CUDAPlace
(
0
)),
"core is not complied with CUDA and not support the bfloat16"
,
)
class
TestScatterBF16Op
(
TestScatterOp
):
def
_set_dtype
(
self
):
self
.
dtype
=
np
.
uint16
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
self
.
check_output_with_place
(
place
,
check_eager
=
False
)
def
test_check_grad
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
,
'Updates'
],
'Out'
,
check_eager
=
False
)
class
TestScatterOp0
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"scatter"
self
.
python_api
=
paddle
.
scatter
ref_np
=
np
.
ones
((
3
,
3
)).
astype
(
"float32"
)
self
.
_set_dtype
()
target_dtype
=
"float16"
if
self
.
dtype
==
np
.
float16
else
"float32"
ref_np
=
np
.
ones
((
3
,
3
)).
astype
(
target_dtype
)
index_np
=
np
.
array
([
1
,
2
]).
astype
(
"int32"
)
updates_np
=
np
.
random
.
random
((
2
,
3
)).
astype
(
"float32"
)
updates_np
=
np
.
random
.
random
((
2
,
3
)).
astype
(
target_dtype
)
output_np
=
np
.
copy
(
ref_np
)
output_np
[
index_np
]
=
updates_np
if
self
.
dtype
==
np
.
uint16
:
ref_np
=
convert_float_to_uint16
(
ref_np
)
updates_np
=
convert_float_to_uint16
(
updates_np
)
output_np
=
convert_float_to_uint16
(
output_np
)
self
.
inputs
=
{
'X'
:
ref_np
,
'Ids'
:
index_np
,
'Updates'
:
updates_np
}
self
.
attrs
=
{
'overwrite'
:
True
}
self
.
outputs
=
{
'Out'
:
output_np
}
def
_set_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
self
.
check_output
(
check_eager
=
False
)
...
...
@@ -63,22 +108,58 @@ class TestScatterOp0(OpTest):
self
.
check_grad
([
"X"
,
"Updates"
],
"Out"
,
check_eager
=
False
)
class
TestScatterFP16Op0
(
TestScatterOp0
):
def
_set_dtype
(
self
):
self
.
dtype
=
np
.
float16
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
()
or
not
core
.
is_bfloat16_supported
(
core
.
CUDAPlace
(
0
)),
"core is not complied with CUDA and not support the bfloat16"
,
)
class
TestScatterBF16Op0
(
TestScatterOp0
):
def
_set_dtype
(
self
):
self
.
dtype
=
np
.
uint16
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
self
.
check_output_with_place
(
place
,
check_eager
=
False
)
def
test_check_grad
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
,
'Updates'
],
'Out'
,
check_eager
=
False
)
class
TestScatterOp1
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"scatter"
self
.
python_api
=
paddle
.
scatter
ref_np
=
np
.
ones
((
3
,
3
)).
astype
(
"float32"
)
zeros_np
=
np
.
zeros
([
2
,
3
]).
astype
(
'float32'
)
self
.
_set_dtype
()
target_dtype
=
"float16"
if
self
.
dtype
==
np
.
float16
else
"float32"
ref_np
=
np
.
ones
((
3
,
3
)).
astype
(
target_dtype
)
zeros_np
=
np
.
zeros
([
2
,
3
]).
astype
(
target_dtype
)
index_np
=
np
.
array
([
1
,
1
]).
astype
(
"int32"
)
updates_np
=
np
.
random
.
random
((
2
,
3
)).
astype
(
"float32"
)
updates_np
=
np
.
random
.
random
((
2
,
3
)).
astype
(
target_dtype
)
output_np
=
np
.
copy
(
ref_np
)
output_np
[
index_np
]
=
zeros_np
for
i
in
range
(
0
,
len
(
index_np
)):
output_np
[
index_np
[
i
]]
+=
updates_np
[
i
]
if
self
.
dtype
==
np
.
uint16
:
ref_np
=
convert_float_to_uint16
(
ref_np
)
updates_np
=
convert_float_to_uint16
(
updates_np
)
output_np
=
convert_float_to_uint16
(
output_np
)
self
.
attrs
=
{
'overwrite'
:
False
}
self
.
inputs
=
{
'X'
:
ref_np
,
'Ids'
:
index_np
,
'Updates'
:
updates_np
}
self
.
outputs
=
{
'Out'
:
output_np
}
def
_set_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
self
.
check_output
(
check_eager
=
False
)
...
...
@@ -86,6 +167,33 @@ class TestScatterOp1(OpTest):
self
.
check_grad
([
"X"
,
"Updates"
],
"Out"
,
check_eager
=
False
)
class
TestScatterFP16Op1
(
TestScatterOp1
):
def
_set_dtype
(
self
):
self
.
dtype
=
np
.
float16
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
()
or
not
core
.
is_bfloat16_supported
(
core
.
CUDAPlace
(
0
)),
"core is not complied with CUDA and not support the bfloat16"
,
)
class
TestScatterBF16Op1
(
TestScatterOp1
):
def
_set_dtype
(
self
):
self
.
dtype
=
np
.
uint16
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
self
.
check_output_with_place
(
place
,
check_eager
=
False
)
def
test_check_grad
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
,
'Updates'
],
'Out'
,
check_eager
=
False
)
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
...
...
@@ -93,14 +201,23 @@ class TestScatterOp2(OpTest):
def
setUp
(
self
):
self
.
op_type
=
"scatter"
self
.
python_api
=
paddle
.
scatter
ref_np
=
np
.
ones
((
3
,
3
)).
astype
(
"float32"
)
self
.
_set_dtype
()
target_dtype
=
"float16"
if
self
.
dtype
==
np
.
float16
else
"float32"
ref_np
=
np
.
ones
((
3
,
3
)).
astype
(
target_dtype
)
index_np
=
np
.
array
([
1
,
2
]).
astype
(
"int32"
)
updates_np
=
np
.
random
.
random
((
2
,
3
)).
astype
(
"float32"
)
updates_np
=
np
.
random
.
random
((
2
,
3
)).
astype
(
target_dtype
)
output_np
=
np
.
copy
(
ref_np
)
output_np
[
index_np
]
=
updates_np
if
self
.
dtype
==
np
.
uint16
:
ref_np
=
convert_float_to_uint16
(
ref_np
)
updates_np
=
convert_float_to_uint16
(
updates_np
)
output_np
=
convert_float_to_uint16
(
output_np
)
self
.
inputs
=
{
'X'
:
ref_np
,
'Ids'
:
index_np
,
'Updates'
:
updates_np
}
self
.
outputs
=
{
'Out'
:
output_np
}
def
_set_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
...
...
@@ -114,6 +231,24 @@ class TestScatterOp2(OpTest):
)
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestScatterFP16Op2
(
TestScatterOp2
):
def
_set_dtype
(
self
):
self
.
dtype
=
np
.
float16
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
()
or
not
core
.
is_bfloat16_supported
(
core
.
CUDAPlace
(
0
)),
"core is not complied with CUDA and not support the bfloat16"
,
)
class
TestScatterBF16Op2
(
TestScatterOp2
):
def
_set_dtype
(
self
):
self
.
dtype
=
np
.
uint16
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
...
...
@@ -121,18 +256,27 @@ class TestScatterOp3(OpTest):
def
setUp
(
self
):
self
.
op_type
=
"scatter"
self
.
python_api
=
paddle
.
scatter
ref_np
=
np
.
ones
((
3
,
3
)).
astype
(
"float32"
)
zeros_np
=
np
.
zeros
([
2
,
3
]).
astype
(
'float32'
)
self
.
_set_dtype
()
target_dtype
=
"float16"
if
self
.
dtype
==
np
.
float16
else
"float32"
ref_np
=
np
.
ones
((
3
,
3
)).
astype
(
target_dtype
)
zeros_np
=
np
.
zeros
([
2
,
3
]).
astype
(
target_dtype
)
index_np
=
np
.
array
([
1
,
1
]).
astype
(
"int32"
)
updates_np
=
np
.
random
.
random
((
2
,
3
)).
astype
(
"float32"
)
updates_np
=
np
.
random
.
random
((
2
,
3
)).
astype
(
target_dtype
)
output_np
=
np
.
copy
(
ref_np
)
output_np
[
index_np
]
=
zeros_np
for
i
in
range
(
0
,
len
(
index_np
)):
output_np
[
index_np
[
i
]]
+=
updates_np
[
i
]
if
self
.
dtype
==
np
.
uint16
:
ref_np
=
convert_float_to_uint16
(
ref_np
)
updates_np
=
convert_float_to_uint16
(
updates_np
)
output_np
=
convert_float_to_uint16
(
output_np
)
self
.
attrs
=
{
'overwrite'
:
False
}
self
.
inputs
=
{
'X'
:
ref_np
,
'Ids'
:
index_np
,
'Updates'
:
updates_np
}
self
.
outputs
=
{
'Out'
:
output_np
}
def
_set_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
...
...
@@ -146,18 +290,45 @@ class TestScatterOp3(OpTest):
)
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestScatterFP16Op3
(
TestScatterOp3
):
def
_set_dtype
(
self
):
self
.
dtype
=
np
.
float16
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
()
or
not
core
.
is_bfloat16_supported
(
core
.
CUDAPlace
(
0
)),
"core is not complied with CUDA and not support the bfloat16"
,
)
class
TestScatterBF16Op3
(
TestScatterOp3
):
def
_set_dtype
(
self
):
self
.
dtype
=
np
.
uint16
class
TestScatterOp4
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"scatter"
self
.
python_api
=
paddle
.
scatter
ref_np
=
np
.
ones
((
3
,
3
)).
astype
(
"float32"
)
self
.
_set_dtype
()
target_dtype
=
"float16"
if
self
.
dtype
==
np
.
float16
else
"float32"
ref_np
=
np
.
ones
((
3
,
3
)).
astype
(
target_dtype
)
index_np
=
np
.
array
([
1
,
2
]).
astype
(
"int64"
)
updates_np
=
np
.
random
.
random
((
2
,
3
)).
astype
(
"float32"
)
updates_np
=
np
.
random
.
random
((
2
,
3
)).
astype
(
target_dtype
)
output_np
=
np
.
copy
(
ref_np
)
output_np
[
index_np
]
=
updates_np
if
self
.
dtype
==
np
.
uint16
:
ref_np
=
convert_float_to_uint16
(
ref_np
)
updates_np
=
convert_float_to_uint16
(
updates_np
)
output_np
=
convert_float_to_uint16
(
output_np
)
self
.
inputs
=
{
'X'
:
ref_np
,
'Ids'
:
index_np
,
'Updates'
:
updates_np
}
self
.
outputs
=
{
'Out'
:
output_np
}
def
_set_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
self
.
check_output
(
check_eager
=
False
)
...
...
@@ -165,6 +336,33 @@ class TestScatterOp4(OpTest):
self
.
check_grad
([
'X'
,
'Updates'
],
'Out'
,
check_eager
=
False
)
class
TestScatterFP16Op4
(
TestScatterOp4
):
def
_set_dtype
(
self
):
self
.
dtype
=
np
.
float16
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
()
or
not
core
.
is_bfloat16_supported
(
core
.
CUDAPlace
(
0
)),
"core is not complied with CUDA and not support the bfloat16"
,
)
class
TestScatterBF16Op4
(
TestScatterOp4
):
def
_set_dtype
(
self
):
self
.
dtype
=
np
.
uint16
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
self
.
check_output_with_place
(
place
,
check_eager
=
False
)
def
test_check_grad
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
,
'Updates'
],
'Out'
,
check_eager
=
False
)
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
...
...
@@ -172,14 +370,23 @@ class TestScatterOp5(OpTest):
def
setUp
(
self
):
self
.
op_type
=
"scatter"
self
.
python_api
=
paddle
.
scatter
ref_np
=
np
.
ones
((
3
,
3
)).
astype
(
"float32"
)
self
.
_set_dtype
()
target_dtype
=
"float16"
if
self
.
dtype
==
np
.
float16
else
"float32"
ref_np
=
np
.
ones
((
3
,
3
)).
astype
(
target_dtype
)
index_np
=
np
.
array
([
1
,
2
]).
astype
(
"int64"
)
updates_np
=
np
.
random
.
random
((
2
,
3
)).
astype
(
"float32"
)
updates_np
=
np
.
random
.
random
((
2
,
3
)).
astype
(
target_dtype
)
output_np
=
np
.
copy
(
ref_np
)
output_np
[
index_np
]
=
updates_np
if
self
.
dtype
==
np
.
uint16
:
ref_np
=
convert_float_to_uint16
(
ref_np
)
updates_np
=
convert_float_to_uint16
(
updates_np
)
output_np
=
convert_float_to_uint16
(
output_np
)
self
.
inputs
=
{
'X'
:
ref_np
,
'Ids'
:
index_np
,
'Updates'
:
updates_np
}
self
.
outputs
=
{
'Out'
:
output_np
}
def
_set_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
...
...
@@ -193,18 +400,45 @@ class TestScatterOp5(OpTest):
)
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestScatterFP16Op5
(
TestScatterOp5
):
def
_set_dtype
(
self
):
self
.
dtype
=
np
.
float16
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
()
or
not
core
.
is_bfloat16_supported
(
core
.
CUDAPlace
(
0
)),
"core is not complied with CUDA and not support the bfloat16"
,
)
class
TestScatterBF16Op5
(
TestScatterOp5
):
def
_set_dtype
(
self
):
self
.
dtype
=
np
.
uint16
class
TestScatterOp6
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"scatter"
self
.
python_api
=
paddle
.
scatter
ref_np
=
np
.
ones
((
3
,
50
)).
astype
(
"float32"
)
self
.
_set_dtype
()
target_dtype
=
"float16"
if
self
.
dtype
==
np
.
float16
else
"float32"
ref_np
=
np
.
ones
((
3
,
50
)).
astype
(
target_dtype
)
index_np
=
np
.
array
([[
1
],
[
2
]]).
astype
(
"int32"
)
updates_np
=
np
.
random
.
random
((
2
,
50
)).
astype
(
"float32"
)
updates_np
=
np
.
random
.
random
((
2
,
50
)).
astype
(
target_dtype
)
output_np
=
np
.
copy
(
ref_np
)
output_np
[
np
.
array
([
1
,
2
]).
astype
(
"int32"
)]
=
updates_np
if
self
.
dtype
==
np
.
uint16
:
ref_np
=
convert_float_to_uint16
(
ref_np
)
updates_np
=
convert_float_to_uint16
(
updates_np
)
output_np
=
convert_float_to_uint16
(
output_np
)
self
.
inputs
=
{
'X'
:
ref_np
,
'Ids'
:
index_np
,
'Updates'
:
updates_np
}
self
.
outputs
=
{
'Out'
:
output_np
}
def
_set_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
self
.
check_output
(
check_eager
=
False
)
...
...
@@ -212,6 +446,33 @@ class TestScatterOp6(OpTest):
self
.
check_grad
([
"X"
,
"Updates"
],
"Out"
,
check_eager
=
False
)
class
TestScatterFP16Op6
(
TestScatterOp6
):
def
_set_dtype
(
self
):
self
.
dtype
=
np
.
float16
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
()
or
not
core
.
is_bfloat16_supported
(
core
.
CUDAPlace
(
0
)),
"core is not complied with CUDA and not support the bfloat16"
,
)
class
TestScatterBF16Op6
(
TestScatterOp6
):
def
_set_dtype
(
self
):
self
.
dtype
=
np
.
uint16
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
self
.
check_output_with_place
(
place
,
check_eager
=
False
)
def
test_check_grad
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
,
'Updates'
],
'Out'
,
check_eager
=
False
)
class
TestScatterAPI
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
places
=
[
fluid
.
CPUPlace
()]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录