Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ef628ab8
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ef628ab8
编写于
9月 03, 2018
作者:
C
chengduo
提交者:
GitHub
9月 03, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix high level API(Inference) bug (#13159)
* fix high level API(Inference) bug * patch the unit tests
上级
737a033e
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
110 addition
and
40 deletion
+110
-40
python/paddle/fluid/inferencer.py
python/paddle/fluid/inferencer.py
+3
-4
python/paddle/fluid/tests/book/high-level-api/image_classification/test_image_classification_resnet.py
.../image_classification/test_image_classification_resnet.py
+28
-8
python/paddle/fluid/tests/book/high-level-api/image_classification/test_image_classification_vgg.py
...api/image_classification/test_image_classification_vgg.py
+27
-10
python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_conv.py
...-level-api/recognize_digits/test_recognize_digits_conv.py
+24
-9
python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_mlp.py
...h-level-api/recognize_digits/test_recognize_digits_mlp.py
+28
-9
未找到文件。
python/paddle/fluid/inferencer.py
浏览文件 @
ef628ab8
...
...
@@ -98,10 +98,9 @@ class Inferencer(object):
raise
ValueError
(
"inputs should be a map of {'input_name': input_var}"
)
with
executor
.
scope_guard
(
self
.
scope
):
results
=
self
.
exe
.
run
(
self
.
inference_program
,
feed
=
inputs
,
fetch_list
=
[
self
.
predict_var
],
with
self
.
_prog_and_scope_guard
():
results
=
self
.
exe
.
run
(
feed
=
inputs
,
fetch_list
=
[
self
.
predict_var
.
name
],
return_numpy
=
return_numpy
)
return
results
...
...
python/paddle/fluid/tests/book/high-level-api/image_classification/test_image_classification_resnet.py
浏览文件 @
ef628ab8
...
...
@@ -16,7 +16,9 @@ from __future__ import print_function
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
import
numpy
import
os
import
cifar10_small_test_set
...
...
@@ -89,7 +91,7 @@ def optimizer_func():
return
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
def
train
(
use_cuda
,
train_program
,
params_dirname
):
def
train
(
use_cuda
,
train_program
,
para
llel
,
para
ms_dirname
):
BATCH_SIZE
=
128
EPOCH_NUM
=
1
...
...
@@ -116,7 +118,10 @@ def train(use_cuda, train_program, params_dirname):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
trainer
=
fluid
.
Trainer
(
train_func
=
train_program
,
optimizer_func
=
optimizer_func
,
place
=
place
)
train_func
=
train_program
,
optimizer_func
=
optimizer_func
,
place
=
place
,
parallel
=
parallel
)
trainer
.
train
(
reader
=
train_reader
,
...
...
@@ -125,10 +130,13 @@ def train(use_cuda, train_program, params_dirname):
feed_order
=
[
'pixel'
,
'label'
])
def
infer
(
use_cuda
,
inference_program
,
params_dirname
=
None
):
def
infer
(
use_cuda
,
inference_program
,
para
llel
,
para
ms_dirname
=
None
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
inferencer
=
fluid
.
Inferencer
(
infer_func
=
inference_program
,
param_path
=
params_dirname
,
place
=
place
)
infer_func
=
inference_program
,
param_path
=
params_dirname
,
place
=
place
,
parallel
=
parallel
)
# The input's dimension of conv should be 4-D or 5-D.
# Use normilized image pixels as input data, which should be in the range
...
...
@@ -139,22 +147,34 @@ def infer(use_cuda, inference_program, params_dirname=None):
print
(
"infer results: "
,
results
)
def
main
(
use_cuda
):
def
main
(
use_cuda
,
parallel
):
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
return
save_path
=
"image_classification_resnet.inference.model"
os
.
environ
[
'CPU_NUM'
]
=
str
(
4
)
train
(
use_cuda
=
use_cuda
,
train_program
=
train_network
,
params_dirname
=
save_path
)
params_dirname
=
save_path
,
parallel
=
parallel
)
# FIXME(zcd): in the inference stage, the number of
# input data is one, it is not appropriate to use parallel.
if
parallel
and
use_cuda
:
return
os
.
environ
[
'CPU_NUM'
]
=
str
(
1
)
infer
(
use_cuda
=
use_cuda
,
inference_program
=
inference_network
,
params_dirname
=
save_path
)
params_dirname
=
save_path
,
parallel
=
parallel
)
if
__name__
==
'__main__'
:
for
use_cuda
in
(
False
,
True
):
main
(
use_cuda
=
use_cuda
)
for
parallel
in
(
False
,
True
):
if
use_cuda
and
not
core
.
is_compiled_with_cuda
():
continue
main
(
use_cuda
=
use_cuda
,
parallel
=
parallel
)
python/paddle/fluid/tests/book/high-level-api/image_classification/test_image_classification_vgg.py
浏览文件 @
ef628ab8
...
...
@@ -16,7 +16,9 @@ from __future__ import print_function
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
import
numpy
import
os
import
cifar10_small_test_set
...
...
@@ -68,7 +70,7 @@ def optimizer_func():
return
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
def
train
(
use_cuda
,
train_program
,
params_dirname
):
def
train
(
use_cuda
,
train_program
,
para
llel
,
para
ms_dirname
):
BATCH_SIZE
=
128
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
...
...
@@ -93,7 +95,10 @@ def train(use_cuda, train_program, params_dirname):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
trainer
=
fluid
.
Trainer
(
train_func
=
train_program
,
place
=
place
,
optimizer_func
=
optimizer_func
)
train_func
=
train_program
,
place
=
place
,
optimizer_func
=
optimizer_func
,
parallel
=
parallel
)
trainer
.
train
(
reader
=
train_reader
,
...
...
@@ -102,10 +107,13 @@ def train(use_cuda, train_program, params_dirname):
feed_order
=
[
'pixel'
,
'label'
])
def
infer
(
use_cuda
,
inference_program
,
params_dirname
=
None
):
def
infer
(
use_cuda
,
inference_program
,
para
llel
,
para
ms_dirname
=
None
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
inferencer
=
fluid
.
Inferencer
(
infer_func
=
inference_program
,
param_path
=
params_dirname
,
place
=
place
)
infer_func
=
inference_program
,
param_path
=
params_dirname
,
place
=
place
,
parallel
=
parallel
)
# The input's dimension of conv should be 4-D or 5-D.
# Use normilized image pixels as input data, which should be in the range
...
...
@@ -116,22 +124,31 @@ def infer(use_cuda, inference_program, params_dirname=None):
print
(
"infer results: "
,
results
)
def
main
(
use_cuda
):
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
return
def
main
(
use_cuda
,
parallel
):
save_path
=
"image_classification_vgg.inference.model"
os
.
environ
[
'CPU_NUM'
]
=
str
(
4
)
train
(
use_cuda
=
use_cuda
,
train_program
=
train_network
,
params_dirname
=
save_path
)
params_dirname
=
save_path
,
parallel
=
parallel
)
# FIXME(zcd): in the inference stage, the number of
# input data is one, it is not appropriate to use parallel.
if
parallel
and
use_cuda
:
return
os
.
environ
[
'CPU_NUM'
]
=
str
(
1
)
infer
(
use_cuda
=
use_cuda
,
inference_program
=
inference_network
,
params_dirname
=
save_path
)
params_dirname
=
save_path
,
parallel
=
parallel
)
if
__name__
==
'__main__'
:
for
use_cuda
in
(
False
,
True
):
main
(
use_cuda
=
use_cuda
)
for
parallel
in
(
False
,
True
):
if
use_cuda
and
not
core
.
is_compiled_with_cuda
():
continue
main
(
use_cuda
=
use_cuda
,
parallel
=
parallel
)
python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_conv.py
浏览文件 @
ef628ab8
...
...
@@ -64,14 +64,14 @@ def optimizer_func():
return
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
def
train
(
use_cuda
,
train_program
,
params_dirname
):
def
train
(
use_cuda
,
train_program
,
para
llel
,
para
ms_dirname
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
trainer
=
fluid
.
Trainer
(
train_func
=
train_program
,
place
=
place
,
optimizer_func
=
optimizer_func
,
parallel
=
True
)
parallel
=
parallel
)
def
event_handler
(
event
):
if
isinstance
(
event
,
fluid
.
EndEpochEvent
):
...
...
@@ -108,11 +108,14 @@ def train(use_cuda, train_program, params_dirname):
feed_order
=
[
'img'
,
'label'
])
def
infer
(
use_cuda
,
inference_program
,
params_dirname
=
None
):
def
infer
(
use_cuda
,
inference_program
,
para
llel
,
para
ms_dirname
=
None
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
inferencer
=
fluid
.
Inferencer
(
infer_func
=
inference_program
,
param_path
=
params_dirname
,
place
=
place
)
infer_func
=
inference_program
,
param_path
=
params_dirname
,
place
=
place
,
parallel
=
parallel
)
batch_size
=
1
tensor_img
=
numpy
.
random
.
uniform
(
-
1.0
,
1.0
,
...
...
@@ -123,20 +126,32 @@ def infer(use_cuda, inference_program, params_dirname=None):
print
(
"infer results: "
,
results
[
0
])
def
main
(
use_cuda
):
def
main
(
use_cuda
,
parallel
):
params_dirname
=
"recognize_digits_conv.inference.model"
# call train() with is_local argument to run distributed train
os
.
environ
[
'CPU_NUM'
]
=
str
(
4
)
train
(
use_cuda
=
use_cuda
,
train_program
=
train_program
,
params_dirname
=
params_dirname
)
params_dirname
=
params_dirname
,
parallel
=
parallel
)
# FIXME(zcd): in the inference stage, the number of
# input data is one, it is not appropriate to use parallel.
if
parallel
and
use_cuda
:
return
os
.
environ
[
'CPU_NUM'
]
=
str
(
1
)
infer
(
use_cuda
=
use_cuda
,
inference_program
=
inference_program
,
params_dirname
=
params_dirname
)
params_dirname
=
params_dirname
,
parallel
=
parallel
)
if
__name__
==
'__main__'
:
# for use_cuda in (False, True):
main
(
use_cuda
=
core
.
is_compiled_with_cuda
())
for
use_cuda
in
(
False
,
True
):
for
parallel
in
(
False
,
True
):
if
use_cuda
and
not
core
.
is_compiled_with_cuda
():
continue
main
(
use_cuda
=
use_cuda
,
parallel
=
parallel
)
python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_mlp.py
浏览文件 @
ef628ab8
...
...
@@ -16,6 +16,7 @@ from __future__ import print_function
import
argparse
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
import
paddle
import
sys
import
numpy
...
...
@@ -50,11 +51,14 @@ def optimizer_func():
return
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
def
train
(
use_cuda
,
train_program
,
params_dirname
):
def
train
(
use_cuda
,
train_program
,
params_dirname
,
parallel
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
trainer
=
fluid
.
Trainer
(
train_func
=
train_program
,
place
=
place
,
optimizer_func
=
optimizer_func
)
train_func
=
train_program
,
place
=
place
,
optimizer_func
=
optimizer_func
,
parallel
=
parallel
)
def
event_handler
(
event
):
if
isinstance
(
event
,
fluid
.
EndEpochEvent
):
...
...
@@ -86,11 +90,14 @@ def train(use_cuda, train_program, params_dirname):
feed_order
=
[
'img'
,
'label'
])
def
infer
(
use_cuda
,
inference_program
,
params_dirname
=
None
):
def
infer
(
use_cuda
,
inference_program
,
para
llel
,
para
ms_dirname
=
None
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
inferencer
=
fluid
.
Inferencer
(
infer_func
=
inference_program
,
param_path
=
params_dirname
,
place
=
place
)
infer_func
=
inference_program
,
param_path
=
params_dirname
,
place
=
place
,
parallel
=
parallel
)
batch_size
=
1
tensor_img
=
numpy
.
random
.
uniform
(
-
1.0
,
1.0
,
...
...
@@ -101,20 +108,32 @@ def infer(use_cuda, inference_program, params_dirname=None):
print
(
"infer results: "
,
results
[
0
])
def
main
(
use_cuda
):
def
main
(
use_cuda
,
parallel
):
params_dirname
=
"recognize_digits_mlp.inference.model"
# call train() with is_local argument to run distributed train
os
.
environ
[
'CPU_NUM'
]
=
str
(
4
)
train
(
use_cuda
=
use_cuda
,
train_program
=
train_program
,
params_dirname
=
params_dirname
)
params_dirname
=
params_dirname
,
parallel
=
parallel
)
# FIXME(zcd): in the inference stage, the number of
# input data is one, it is not appropriate to use parallel.
if
parallel
and
use_cuda
:
return
os
.
environ
[
'CPU_NUM'
]
=
str
(
1
)
infer
(
use_cuda
=
use_cuda
,
inference_program
=
inference_program
,
params_dirname
=
params_dirname
)
params_dirname
=
params_dirname
,
parallel
=
parallel
)
if
__name__
==
'__main__'
:
# for use_cuda in (False, True):
main
(
use_cuda
=
False
)
for
use_cuda
in
(
False
,
True
):
for
parallel
in
(
False
,
True
):
if
use_cuda
and
not
core
.
is_compiled_with_cuda
():
continue
main
(
use_cuda
=
use_cuda
,
parallel
=
parallel
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录