Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ef61df30
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ef61df30
编写于
10月 10, 2022
作者:
R
Rayman
提交者:
GitHub
10月 10, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
【Hackathon No.36】优化 lerp_grad op 在 GPU 上的计算性能 (#45946)
上级
5e0614a1
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
274 addition
and
2 deletion
+274
-2
paddle/phi/kernels/gpu/lerp_grad_kernel.cu
paddle/phi/kernels/gpu/lerp_grad_kernel.cu
+242
-1
paddle/phi/kernels/impl/broadcast_tensors_kernel_impl.h
paddle/phi/kernels/impl/broadcast_tensors_kernel_impl.h
+2
-1
python/paddle/fluid/tests/unittests/test_lerp_op.py
python/paddle/fluid/tests/unittests/test_lerp_op.py
+30
-0
未找到文件。
paddle/phi/kernels/gpu/lerp_grad_kernel.cu
浏览文件 @
ef61df30
...
@@ -15,8 +15,249 @@
...
@@ -15,8 +15,249 @@
#include "paddle/phi/kernels/lerp_grad_kernel.h"
#include "paddle/phi/kernels/lerp_grad_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/lerp_grad_kernel_impl.h"
#include "paddle/phi/kernels/broadcast_tensors_kernel.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/funcs/common_shape.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/reduce_function.h"
#include "paddle/phi/kernels/gpu/reduce.h"
namespace
phi
{
template
<
typename
T
>
__global__
void
LerpGradKernelImpl
(
const
T
*
weight
,
const
T
*
dout
,
T
*
dx
,
T
*
dy
,
const
int
out_size
,
const
int
x_size
,
const
int
y_size
)
{
CUDA_KERNEL_LOOP_TYPE
(
idx
,
out_size
,
int64_t
)
{
T
temp_dx
=
weight
[
idx
]
*
dout
[
idx
];
if
(
dx
)
{
if
(
idx
<
x_size
)
{
dx
[
idx
]
=
dout
[
idx
]
-
temp_dx
;
}
}
if
(
dy
)
{
if
(
idx
<
y_size
)
{
dy
[
idx
]
=
temp_dx
;
}
}
}
}
template
<
typename
T
>
__global__
void
LerpGradScalarKernelImpl
(
const
T
*
weight
,
const
T
*
dout
,
T
*
dx
,
T
*
dy
,
const
int
out_size
,
const
int
x_size
,
const
int
y_size
)
{
T
weight_scalar
=
weight
[
0
];
CUDA_KERNEL_LOOP_TYPE
(
idx
,
out_size
,
int64_t
)
{
T
temp_dx
=
weight_scalar
*
dout
[
idx
];
if
(
dx
)
{
if
(
idx
<
x_size
)
{
dx
[
idx
]
=
dout
[
idx
]
-
temp_dx
;
}
}
if
(
dy
)
{
if
(
idx
<
y_size
)
{
dy
[
idx
]
=
temp_dx
;
}
}
}
}
bool
XYNeedReduce
(
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
const
DenseTensor
&
out
)
{
auto
x_dims
=
x
.
dims
();
auto
y_dims
=
y
.
dims
();
auto
out_dims
=
out
.
dims
();
int
x_rank
=
x_dims
.
size
();
int
y_rank
=
y_dims
.
size
();
int
out_rank
=
out_dims
.
size
();
int
smaller_rank
=
std
::
min
(
x_rank
,
y_rank
);
if
(
std
::
max
(
x_rank
,
y_rank
)
<
out_rank
)
{
return
true
;
}
for
(
int
i
=
1
;
i
<=
smaller_rank
;
++
i
)
{
int
x_idx
=
x_rank
-
i
;
int
y_idx
=
y_rank
-
i
;
int
out_idx
=
out_rank
-
i
;
if
(
x_dims
[
x_idx
]
!=
y_dims
[
y_idx
])
{
return
true
;
}
if
(
x_dims
[
x_idx
]
==
1
&&
y_dims
[
y_idx
]
==
1
&&
out_dims
[
out_idx
]
!=
1
)
{
return
true
;
}
}
return
false
;
}
template
<
typename
T
,
typename
Context
>
void
SwitchKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
weight
,
const
DenseTensor
&
out_grad
,
const
int
x_grad_size
,
const
int
y_grad_size
,
T
*
x_grad_data
,
T
*
y_grad_data
)
{
if
(
weight
.
numel
()
==
1
)
{
// condition when weight is a scalar
const
T
*
weight_data
=
weight
.
data
<
T
>
();
const
T
*
out_grad_data
=
out_grad
.
data
<
T
>
();
const
int64_t
out_size
=
out_grad
.
numel
();
const
int64_t
weight_size
=
weight
.
numel
();
auto
gpu_config
=
phi
::
backends
::
gpu
::
GetGpuLaunchConfig1D
(
ctx
,
out_size
);
LerpGradScalarKernelImpl
<
T
><<<
gpu_config
.
GetGridSize
(),
gpu_config
.
GetBlockSize
(),
0
,
ctx
.
stream
()
>>>
(
weight_data
,
out_grad_data
,
x_grad_data
,
y_grad_data
,
out_size
,
x_grad_size
,
y_grad_size
);
}
else
{
// broadcast weight with out_grad's dimensions
const
std
::
vector
<
const
DenseTensor
*>
in_tensors
=
{
&
weight
,
&
out_grad
};
DenseTensor
b_weight
=
phi
::
EmptyLike
<
T
>
(
ctx
,
out_grad
);
DenseTensor
b_out
=
phi
::
EmptyLike
<
T
>
(
ctx
,
out_grad
);
std
::
vector
<
DenseTensor
*>
out_tensors
=
{
&
b_weight
,
&
b_out
};
phi
::
BroadcastTensorsKernel
<
T
,
Context
>
(
ctx
,
in_tensors
,
out_tensors
);
const
T
*
weight_data
=
b_weight
.
data
<
T
>
();
const
T
*
out_grad_data
=
b_out
.
data
<
T
>
();
const
int
out_size
=
out_grad
.
numel
();
const
int
weight_size
=
weight
.
numel
();
auto
gpu_config
=
phi
::
backends
::
gpu
::
GetGpuLaunchConfig1D
(
ctx
,
out_size
);
LerpGradKernelImpl
<
T
><<<
gpu_config
.
GetGridSize
(),
gpu_config
.
GetBlockSize
(),
0
,
ctx
.
stream
()
>>>
(
weight_data
,
out_grad_data
,
x_grad_data
,
y_grad_data
,
out_size
,
x_grad_size
,
y_grad_size
);
}
}
template
<
typename
T
,
typename
Context
>
void
LerpGradKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
const
DenseTensor
&
weight
,
const
DenseTensor
&
out
,
const
DenseTensor
&
out_grad
,
DenseTensor
*
x_grad
,
DenseTensor
*
y_grad
)
{
const
int
rank
=
out
.
dims
().
size
();
PADDLE_ENFORCE_GE
(
rank
,
1
,
phi
::
errors
::
InvalidArgument
(
"The number of dimensions for LerpGradOp must be "
"greater than or equal to 1, but the value received is %d."
,
rank
));
PADDLE_ENFORCE_LE
(
rank
,
6
,
phi
::
errors
::
InvalidArgument
(
"The number of dimensions for LerpGradOp must be "
"less than or equal to 6, but the value received is %d."
,
rank
));
// check if x_grad and y_grad need to be reduced
// if x has a different dimension with y or weight in the middle axis, then
// they need to be broadcast and then reduced.
bool
reduce_flag
=
XYNeedReduce
(
x
,
y
,
out
);
if
(
!
reduce_flag
)
{
int
x_grad_size
=
0
,
y_grad_size
=
0
;
T
*
x_grad_data
=
NULL
;
T
*
y_grad_data
=
NULL
;
if
(
x_grad
)
{
x_grad_data
=
ctx
.
template
Alloc
<
T
>(
x_grad
);
x_grad_size
=
x
.
numel
();
}
if
(
y_grad
)
{
y_grad_data
=
ctx
.
template
Alloc
<
T
>(
y_grad
);
y_grad_size
=
y
.
numel
();
}
SwitchKernel
<
T
,
Context
>
(
ctx
,
weight
,
out_grad
,
x_grad_size
,
y_grad_size
,
x_grad_data
,
y_grad_data
);
}
else
{
int
x_grad_size
=
0
,
y_grad_size
=
0
;
DenseTensor
b_xgrad
=
phi
::
EmptyLike
<
T
,
Context
>
(
ctx
,
out_grad
);
DenseTensor
b_ygrad
=
phi
::
EmptyLike
<
T
,
Context
>
(
ctx
,
out_grad
);
T
*
x_grad_data
=
NULL
;
T
*
y_grad_data
=
NULL
;
if
(
x_grad
)
{
x_grad_data
=
ctx
.
template
Alloc
<
T
>(
&
b_xgrad
);
x_grad_size
=
out
.
numel
();
}
if
(
y_grad
)
{
y_grad_data
=
ctx
.
template
Alloc
<
T
>(
&
b_ygrad
);
y_grad_size
=
out
.
numel
();
}
SwitchKernel
<
T
,
Context
>
(
ctx
,
weight
,
out_grad
,
x_grad_size
,
y_grad_size
,
x_grad_data
,
y_grad_data
);
if
(
x_grad
)
{
std
::
vector
<
int
>
reduce_axis_x
=
funcs
::
GetReduceDim
(
x_grad
->
dims
(),
b_xgrad
.
dims
(),
-
1
);
if
(
!
reduce_axis_x
.
empty
())
{
phi
::
funcs
::
ReduceKernel
<
T
,
T
,
kps
::
AddFunctor
,
kps
::
IdentityFunctor
<
T
>>
(
ctx
,
b_xgrad
,
x_grad
,
kps
::
IdentityFunctor
<
T
>
(),
reduce_axis_x
);
}
else
{
x_grad
->
ShareDataWith
(
b_xgrad
);
}
}
if
(
y_grad
)
{
std
::
vector
<
int
>
reduce_axis_y
=
funcs
::
GetReduceDim
(
y_grad
->
dims
(),
b_ygrad
.
dims
(),
-
1
);
if
(
!
reduce_axis_y
.
empty
())
{
phi
::
funcs
::
ReduceKernel
<
T
,
T
,
kps
::
AddFunctor
,
kps
::
IdentityFunctor
<
T
>>
(
ctx
,
b_ygrad
,
y_grad
,
kps
::
IdentityFunctor
<
T
>
(),
reduce_axis_y
);
}
else
{
y_grad
->
ShareDataWith
(
b_ygrad
);
}
}
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
PD_REGISTER_KERNEL
(
lerp_grad
,
GPU
,
ALL_LAYOUT
,
phi
::
LerpGradKernel
,
float
,
double
)
{}
lerp_grad
,
GPU
,
ALL_LAYOUT
,
phi
::
LerpGradKernel
,
float
,
double
)
{}
paddle/phi/kernels/impl/broadcast_tensors_kernel_impl.h
浏览文件 @
ef61df30
...
@@ -106,10 +106,11 @@ void BroadcastTensorsKernel(const Context& ctx,
...
@@ -106,10 +106,11 @@ void BroadcastTensorsKernel(const Context& ctx,
SWITCH_OUT_RANK_CASE
(
3
)
SWITCH_OUT_RANK_CASE
(
3
)
SWITCH_OUT_RANK_CASE
(
4
)
SWITCH_OUT_RANK_CASE
(
4
)
SWITCH_OUT_RANK_CASE
(
5
)
SWITCH_OUT_RANK_CASE
(
5
)
SWITCH_OUT_RANK_CASE
(
6
)
default:
{
default:
{
PADDLE_THROW
(
paddle
::
platform
::
errors
::
InvalidArgument
(
PADDLE_THROW
(
paddle
::
platform
::
errors
::
InvalidArgument
(
"Target tensor rank out of range"
"Target tensor rank out of range"
"Maximum supported rank for broadcast is:
5
"
));
"Maximum supported rank for broadcast is:
6
"
));
}
}
}
}
}
}
...
...
python/paddle/fluid/tests/unittests/test_lerp_op.py
浏览文件 @
ef61df30
...
@@ -12,6 +12,8 @@
...
@@ -12,6 +12,8 @@
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
unittest
import
numpy
as
np
import
numpy
as
np
from
op_test
import
OpTest
from
op_test
import
OpTest
...
@@ -78,6 +80,34 @@ class TestLerpWithDim6(TestLerp):
...
@@ -78,6 +80,34 @@ class TestLerpWithDim6(TestLerp):
self
.
shape
=
[
2
,
1
,
2
,
5
,
1
,
5
]
self
.
shape
=
[
2
,
1
,
2
,
5
,
1
,
5
]
class
TestLerpBroadXY
(
TestLerp
):
def
setUp
(
self
):
self
.
op_type
=
"lerp"
self
.
python_api
=
paddle
.
lerp
self
.
init_dtype
()
self
.
init_shape
()
x
=
np
.
arange
(
1.
,
201.
).
astype
(
self
.
dtype
).
reshape
([
2
,
1
,
2
,
50
])
y
=
np
.
full
(
200
,
10.
).
astype
(
self
.
dtype
).
reshape
([
2
,
2
,
1
,
50
])
w
=
np
.
asarray
([
0.5
]).
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
,
'Weight'
:
w
}
self
.
outputs
=
{
'Out'
:
x
+
w
*
(
y
-
x
)}
class
TestLerpBroadWToXY
(
TestLerp
):
def
setUp
(
self
):
self
.
op_type
=
"lerp"
self
.
python_api
=
paddle
.
lerp
self
.
init_dtype
()
self
.
init_shape
()
x
=
np
.
full
(
600
,
2.5
).
astype
(
self
.
dtype
).
reshape
([
50
,
2
,
2
,
3
])
y
=
np
.
full
(
600
,
1.
).
astype
(
self
.
dtype
).
reshape
([
50
,
2
,
2
,
3
])
w
=
np
.
random
.
random
([
3
]).
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
,
'Weight'
:
w
}
self
.
outputs
=
{
'Out'
:
x
+
w
*
(
y
-
x
)}
class
TestLerpAPI
(
unittest
.
TestCase
):
class
TestLerpAPI
(
unittest
.
TestCase
):
def
init_dtype
(
self
):
def
init_dtype
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录