未验证 提交 ef4895df 编写于 作者: Q qingqing01 提交者: GitHub

Make IfElse operator works and fix unit testing. (#11972)

1. Fix bug when only true or false branch works.
2. Fix bug in unit testing.
上级 1bd9fe87
......@@ -205,9 +205,10 @@ class ConditionalBlockGradInferShape : public framework::InferShapeBase {
context->SetOutputsDim(framework::GradVarName("Params"),
context->GetInputsDim("Params"));
}
PADDLE_ENFORCE(context->HasOutputs(framework::GradVarName("X")));
context->SetOutputsDim(framework::GradVarName("X"),
context->GetInputsDim("X"));
if (context->HasOutputs(framework::GradVarName("X"))) {
context->SetOutputsDim(framework::GradVarName("X"),
context->GetInputsDim("X"));
}
}
};
......
......@@ -44,8 +44,10 @@ class MergeLoDTensorOp : public framework::OperatorBase {
scope.FindVar(Output("Out"))->GetMutable<framework::LoDTensor>();
auto level = static_cast<size_t>(Attr<int>("level"));
auto &mask_dim = mask.dims();
PADDLE_ENFORCE(in_true.numel() || in_false.numel(),
"Input(InTrue) or Input(InFalse) should be initialized.");
auto &mask_dim = mask.dims();
std::unique_ptr<framework::LoDTensor> cpu_mask{new framework::LoDTensor()};
if (platform::is_cpu_place(mask.place())) {
cpu_mask->ShareDataWith(mask);
......@@ -59,19 +61,27 @@ class MergeLoDTensorOp : public framework::OperatorBase {
}
auto *mask_data = cpu_mask->data<bool>();
int rank = in_true.dims().size();
platform::Place place = in_true.place();
std::type_index data_type = in_true.type();
framework::DDim in_true_dims =
framework::slice_ddim(in_true.dims(), 1, rank);
platform::Place place = dev_place;
int64_t batch_size = in_true.dims()[0] + in_false.dims()[0];
auto in_true_dim_vec = framework::vectorize(in_true_dims);
in_true_dim_vec.insert(in_true_dim_vec.begin(), batch_size);
std::type_index data_type =
in_true.IsInitialized() ? in_true.type() : in_false.type();
int rank;
framework::DDim in_dims;
if (in_true.IsInitialized()) {
rank = in_true.dims().size();
in_dims = framework::slice_ddim(in_true.dims(), 1, rank);
} else {
rank = in_false.dims().size();
in_dims = framework::slice_ddim(in_false.dims(), 1, rank);
}
auto in_dim_vec = framework::vectorize(in_dims);
in_dim_vec.insert(in_dim_vec.begin(), batch_size);
framework::DDim out_dims = framework::make_ddim(in_true_dim_vec);
framework::DDim out_dims = framework::make_ddim(in_dim_vec);
out->Resize(out_dims);
out->mutable_data(place, data_type);
auto *out_lod = out->mutable_lod();
......
......@@ -14,10 +14,11 @@
import paddle
import paddle.fluid.layers as layers
from paddle.fluid.framework import Program, program_guard, default_main_program, default_startup_program
from paddle.fluid.framework import Program, program_guard
from paddle.fluid.executor import Executor
from paddle.fluid.optimizer import MomentumOptimizer
import paddle.fluid.core as core
import paddle.fluid as fluid
import unittest
import numpy as np
......@@ -31,14 +32,13 @@ class TestMNISTIfElseOp(unittest.TestCase):
label = layers.data(name='y', shape=[1], dtype='int64')
limit = layers.fill_constant_batch_size_like(
input=label, dtype='int64', shape=[1], value=5.0)
limit = layers.fill_constant(shape=[1], dtype='int64', value=5)
cond = layers.less_than(x=label, y=limit)
true_image, false_image = layers.split_lod_tensor(
input=image, mask=cond)
true_out = layers.create_tensor(dtype='float32')
true_cond = layers.ConditionalBlock([true_image])
true_cond = layers.ConditionalBlock([cond])
with true_cond.block():
hidden = layers.fc(input=true_image, size=100, act='tanh')
......@@ -46,7 +46,7 @@ class TestMNISTIfElseOp(unittest.TestCase):
layers.assign(input=prob, output=true_out)
false_out = layers.create_tensor(dtype='float32')
false_cond = layers.ConditionalBlock([false_image])
false_cond = layers.ConditionalBlock([cond])
with false_cond.block():
hidden = layers.fc(input=false_image, size=200, act='tanh')
......@@ -64,7 +64,7 @@ class TestMNISTIfElseOp(unittest.TestCase):
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.mnist.train(), buf_size=8192),
batch_size=200)
batch_size=10)
place = core.CPUPlace()
exe = Executor(place)
......@@ -94,8 +94,7 @@ class TestMNISTIfElseOp(unittest.TestCase):
label = layers.data(name='y', shape=[1], dtype='int64')
limit = layers.fill_constant_batch_size_like(
input=label, dtype='int64', shape=[1], value=5.0)
limit = layers.fill_constant(shape=[1], dtype='int64', value=5)
cond = layers.less_than(x=label, y=limit)
ie = layers.IfElse(cond)
......@@ -125,7 +124,7 @@ class TestMNISTIfElseOp(unittest.TestCase):
place = core.CPUPlace()
exe = Executor(place)
exe.run(kwargs['startup_program'])
exe.run(startup_prog)
PASS_NUM = 100
for pass_id in range(PASS_NUM):
for data in train_reader():
......@@ -133,7 +132,7 @@ class TestMNISTIfElseOp(unittest.TestCase):
y_data = np.array(map(lambda x: x[1], data)).astype("int64")
y_data = y_data.reshape((y_data.shape[0], 1))
outs = exe.run(kwargs['main_program'],
outs = exe.run(prog,
feed={'x': x_data,
'y': y_data},
fetch_list=[avg_loss])
......@@ -143,6 +142,67 @@ class TestMNISTIfElseOp(unittest.TestCase):
self.assertFalse(True)
class TestIfElse(unittest.TestCase):
def set_test_case(self):
# condiction is: self.data < self.cond_value
self.cond_value = 0.5
self.data = np.random.rand(25, 1).astype(np.float32)
def compare_ifelse_op_and_numpy(self, place):
self.set_test_case()
prog = Program()
startup_prog = Program()
with program_guard(prog, startup_prog):
src = layers.data(name='data', shape=[1], dtype='float32')
cond = layers.fill_constant(
[1], dtype='float32', value=self.cond_value)
ifcond = layers.less_than(x=src, y=cond)
ie = layers.IfElse(ifcond)
with ie.true_block():
true_target = ie.input(src)
ie.output(true_target)
with ie.false_block():
false_target = ie.input(src)
ie.output(false_target)
if_out = ie()
out = layers.reduce_sum(if_out)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
fetch_list = [out]
o1, = exe.run(fluid.default_main_program(),
feed={'data': self.data},
fetch_list=[out])
o2 = np.sum(self.data)
self.assertTrue(
np.allclose(
o1, o2, atol=1e-8),
"IfElse result : " + str(o1) + "\n Numpy result :" + str(o2))
def test_cpu(self):
self.compare_ifelse_op_and_numpy(fluid.CPUPlace())
def test_cuda(self):
if not core.is_compiled_with_cuda():
return
self.compare_ifelse_op_and_numpy(fluid.CUDAPlace(0))
class TestIfElseTrueBranch(TestIfElse):
def set_test_case(self):
# condiction is: self.data < self.cond_value
self.cond_value = 10.
self.data = np.random.rand(25, 1).astype(np.float32)
class TestIfElseFalseBranch(TestIfElse):
def set_test_case(self):
# condiction is: self.data < self.cond_value
self.cond_value = -10.
self.data = np.random.rand(25, 1).astype(np.float32)
if __name__ == '__main__':
# temp disable if else unittest since it could be buggy.
exit(0)
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册