Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
eeb70edd
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
eeb70edd
编写于
2月 28, 2019
作者:
F
flame
提交者:
ceci3
3月 04, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add anakin fc op converter (#15965)
上级
ab5a6484
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
121 addition
and
48 deletion
+121
-48
paddle/fluid/inference/anakin/convert/fc.cc
paddle/fluid/inference/anakin/convert/fc.cc
+37
-3
paddle/fluid/inference/anakin/convert/test_fc_op.cc
paddle/fluid/inference/anakin/convert/test_fc_op.cc
+5
-3
paddle/fluid/inference/anakin/convert/ut_helper.h
paddle/fluid/inference/anakin/convert/ut_helper.h
+36
-3
paddle/fluid/inference/anakin/test_anakin_engine.cc
paddle/fluid/inference/anakin/test_anakin_engine.cc
+43
-39
未找到文件。
paddle/fluid/inference/anakin/convert/fc.cc
浏览文件 @
eeb70edd
...
...
@@ -13,6 +13,16 @@
// limitations under the License.
#include "paddle/fluid/inference/anakin/convert/fc.h"
#include <algorithm>
using
anakin
::
graph
::
GraphGlobalMem
;
using
anakin
::
AK_FLOAT
;
using
anakin
::
Precision
;
using
anakin
::
saber
::
NV
;
using
anakin
::
saber
::
X86
;
using
anakin
::
saber
::
Shape
;
using
anakin
::
PBlock
;
using
anakin
::
PTuple
;
namespace
paddle
{
namespace
inference
{
...
...
@@ -23,15 +33,39 @@ void FcOpConverter::operator()(const framework::proto::OpDesc &op,
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
PADDLE_ENFORCE_EQ
(
op_desc
.
Input
(
"X"
).
size
(),
1
);
PADDLE_ENFORCE_EQ
(
op_desc
.
Input
(
"Y"
).
size
(),
1
);
PADDLE_ENFORCE_EQ
(
op_desc
.
In
put
(
"Out"
).
size
(),
1
);
PADDLE_ENFORCE_EQ
(
op_desc
.
Out
put
(
"Out"
).
size
(),
1
);
auto
x_name
=
op_desc
.
Input
(
"X"
).
front
();
PADDLE_ENFORCE
(
x_name
.
size
()
>
0
);
auto
op_name
=
op_desc
.
Type
()
+
":"
+
op_desc
.
Output
(
"Out"
).
front
(
);
auto
*
y_v
=
scope
.
FindVar
(
op_desc
.
Input
(
"Y"
).
front
());
PADDLE_ENFORCE_NOT_NULL
(
y_v
);
auto
*
y_t
=
y_v
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
shape
=
framework
::
vectorize2int
(
y_t
->
dims
());
auto
input_name
=
op_desc
.
Input
(
"X"
).
front
();
auto
output_name
=
op_desc
.
Output
(
"Out"
).
front
();
auto
weight_shape
=
framework
::
vectorize2int
(
y_t
->
dims
());
engine_
->
AddOp
(
op_name
,
"Dense"
,
{
input_name
},
{
output_name
});
engine_
->
AddOpAttr
(
op_name
,
"bias_term"
,
false
);
engine_
->
AddOpAttr
(
op_name
,
"axis"
,
1
);
int
out_dim
=
weight_shape
[
1
];
engine_
->
AddOpAttr
(
op_name
,
"out_dim"
,
out_dim
);
weight_shape
.
push_back
(
1
);
weight_shape
.
push_back
(
1
);
Shape
anakin_shape
(
weight_shape
);
framework
::
LoDTensor
weight_tensor
;
weight_tensor
.
Resize
(
y_t
->
dims
());
TensorCopySync
((
*
y_t
),
platform
::
CPUPlace
(),
&
weight_tensor
);
auto
*
weight1
=
GraphGlobalMem
<
NV
>::
Global
().
template
new_block
<
AK_FLOAT
>(
anakin_shape
);
float
*
cpu_data
=
static_cast
<
float
*>
(
weight1
->
h_tensor
().
mutable_data
());
std
::
copy_n
(
weight_tensor
.
data
<
float
>
(),
weight_tensor
.
numel
(),
cpu_data
);
weight1
->
d_tensor
().
set_shape
(
anakin_shape
);
weight1
->
d_tensor
().
copy_from
(
weight1
->
h_tensor
());
engine_
->
AddOpAttr
(
op_name
,
"weight_1"
,
*
weight1
);
}
}
// namespace anakin
...
...
paddle/fluid/inference/anakin/convert/test_fc_op.cc
浏览文件 @
eeb70edd
...
...
@@ -22,14 +22,16 @@ namespace inference {
namespace
anakin
{
TEST
(
fc_op
,
test
)
{
auto
it
=
OpRegister
::
instance
()
->
Get
(
"fc"
);
ASSERT_TRUE
(
it
!=
nullptr
);
auto
fc_converter
=
OpRegister
::
instance
()
->
Get
(
"fc"
);
ASSERT_TRUE
(
fc_converter
!=
nullptr
);
// Registrar<FcOpConverter> register_fc("fc");
// auto fc = std::make_shared<FcOpConverter>();
std
::
unordered_set
<
std
::
string
>
parameters
({
"mul_y"
});
framework
::
Scope
scope
;
AnakinConvertValidation
validator
(
parameters
,
scope
);
validator
.
DeclInputVar
(
"mul_x"
,
{
1
,
1
,
1
,
1
});
validator
.
DeclParamVar
(
"mul_y"
,
{
1
,
1
,
1
,
2
});
validator
.
DeclParamVar
(
"mul_y"
,
{
1
,
2
});
validator
.
DeclOutputVar
(
"mul_out"
,
{
1
,
1
,
1
,
2
});
// Prepare Op description
...
...
paddle/fluid/inference/anakin/convert/ut_helper.h
浏览文件 @
eeb70edd
...
...
@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#include <map>
#include <memory>
#include <string>
#include <unordered_map>
...
...
@@ -127,6 +128,7 @@ class AnakinConvertValidation {
engine_
->
SetInputShape
(
input
,
t_shape
);
}
engine_
->
Optimize
();
engine_
->
InitGraph
();
}
// We use the set 'neglected_output' here, because some Ops like batch norm,
...
...
@@ -138,16 +140,47 @@ class AnakinConvertValidation {
platform
::
CUDADeviceContext
ctx
(
place_
);
op_
->
Run
(
scope_
,
place_
);
// std::vector<framework::LoDTensor> input_vector;
// std::vector<framework::LoDTensor> output_vector;
std
::
map
<
std
::
string
,
framework
::
LoDTensor
*>
inputs
;
for
(
const
auto
&
input
:
op_desc_
->
InputArgumentNames
())
{
if
(
parameters_
.
count
(
input
))
continue
;
auto
*
var
=
scope_
.
FindVar
(
input
);
auto
tensor
=
var
->
GetMutable
<
framework
::
LoDTensor
>
();
inputs
.
insert
({
input
,
tensor
});
}
std
::
map
<
std
::
string
,
framework
::
LoDTensor
*>
outputs
;
std
::
vector
<
std
::
vector
<
float
>>
fluid_outputs
;
for
(
const
auto
&
output
:
op_desc_
->
OutputArgumentNames
())
{
if
(
neglected_output
.
count
(
output
))
continue
;
std
::
vector
<
float
>
fluid_out
;
auto
*
var
=
scope_
.
FindVar
(
output
);
auto
*
tensor
=
var
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
tensor
=
var
->
GetMutable
<
framework
::
LoDTensor
>
();
framework
::
TensorToVector
(
*
tensor
,
ctx
,
&
fluid_out
);
fluid_outputs
.
push_back
(
fluid_out
);
size_t
fluid_out_size
=
fluid_out
.
size
();
for
(
size_t
i
=
0
;
i
<
fluid_out_size
;
i
++
)
{
//
size_t fluid_out_size = fluid_out.size();
/*
for (size_t i = 0; i < fluid_out_size; i++) {
std::cout << fluid_out[i] << std::endl;
}*/
outputs
.
insert
({
output
,
tensor
});
}
engine_
->
Execute
(
inputs
,
outputs
);
int
i_output
=
0
;
for
(
const
auto
&
output
:
op_desc_
->
OutputArgumentNames
())
{
if
(
neglected_output
.
count
(
output
))
continue
;
std
::
vector
<
float
>
anakin_out
;
auto
*
var
=
scope_
.
FindVar
(
output
);
auto
tensor
=
var
->
GetMutable
<
framework
::
LoDTensor
>
();
framework
::
TensorToVector
(
*
tensor
,
ctx
,
&
anakin_out
);
size_t
anakin_out_size
=
anakin_out
.
size
();
auto
fluid_out
=
fluid_outputs
[
i_output
++
];
for
(
size_t
i
=
0
;
i
<
anakin_out_size
;
i
++
)
{
LOG
(
INFO
)
<<
"Output["
<<
i
<<
"]: anakin["
<<
anakin_out
[
i
]
<<
"], "
<<
"fluid["
<<
fluid_out
[
i
]
<<
"]"
;
}
}
}
...
...
paddle/fluid/inference/anakin/test_anakin_engine.cc
浏览文件 @
eeb70edd
...
...
@@ -46,47 +46,51 @@ class TestAnakinEngine : public ::testing::Test {
void
TestAnakinEngine
::
SetUp
()
{
engine_
.
reset
(
new
AnakinEngine
<
NV
,
Precision
::
FP32
>
(
true
));
}
TEST_F
(
TestAnakinEngine
,
Execute
)
{
engine_
->
AddOp
(
"op1"
,
"Dense"
,
{
"x"
},
{
"y"
});
engine_
->
AddOpAttr
(
"op1"
,
"out_dim"
,
2
);
engine_
->
AddOpAttr
(
"op1"
,
"bias_term"
,
false
);
engine_
->
AddOpAttr
(
"op1"
,
"axis"
,
1
);
std
::
vector
<
int
>
shape
=
{
1
,
1
,
1
,
2
};
Shape
tmp_shape
(
shape
);
// PBlock<NV> weight1(tmp_shape);
auto
*
weight1
=
GraphGlobalMem
<
NV
>::
Global
().
template
new_block
<
AK_FLOAT
>(
tmp_shape
);
// auto *weight1 = new PBlock<NV>(tmp_shape, AK_FLOAT);
float
*
cpu_data
=
static_cast
<
float
*>
(
weight1
->
h_tensor
().
mutable_data
());
cpu_data
[
0
]
=
2.
;
weight1
->
d_tensor
().
set_shape
(
tmp_shape
);
weight1
->
d_tensor
().
copy_from
(
weight1
->
h_tensor
());
engine_
->
AddOpAttr
(
"op1"
,
"weight_1"
,
*
weight1
);
TEST_F
(
TestAnakinEngine
,
Execute
)
{
engine_
->
AddOp
(
"op1"
,
"Dense"
,
{
"x"
},
{
"y"
});
engine_
->
AddOpAttr
(
"op1"
,
"out_dim"
,
2
);
engine_
->
AddOpAttr
(
"op1"
,
"bias_term"
,
false
);
engine_
->
AddOpAttr
(
"op1"
,
"axis"
,
1
);
std
::
vector
<
int
>
shape
=
{
1
,
1
,
1
,
2
};
Shape
tmp_shape
(
shape
);
auto
*
weight1
=
GraphGlobalMem
<
NV
>::
Global
().
template
new_block
<
AK_FLOAT
>(
tmp_shape
);
float
*
cpu_data
=
static_cast
<
float
*>
(
weight1
->
h_tensor
().
mutable_data
());
cpu_data
[
0
]
=
2.
;
weight1
->
d_tensor
().
set_shape
(
tmp_shape
);
weight1
->
d_tensor
().
copy_from
(
weight1
->
h_tensor
());
engine_
->
AddOpAttr
(
"op1"
,
"weight_1"
,
*
weight1
);
engine_
->
Freeze
();
engine_
->
SetInputShape
(
"x"
,
{
1
,
1
,
1
,
1
});
engine_
->
Optimize
();
engine_
->
InitGraph
();
framework
::
LoDTensor
x
;
framework
::
LoDTensor
y
;
x
.
Resize
({
1
,
1
,
1
,
1
});
y
.
Resize
({
1
,
1
,
1
,
2
});
auto
*
x_data
=
x
.
mutable_data
<
float
>
(
platform
::
CUDAPlace
());
float
x_data_cpu
[]
=
{
1.
};
cudaMemcpy
(
x_data
,
x_data_cpu
,
sizeof
(
float
),
cudaMemcpyHostToDevice
);
std
::
map
<
std
::
string
,
framework
::
LoDTensor
*>
inputs
=
{{
"x"
,
&
x
}};
auto
*
y_data
=
y
.
mutable_data
<
float
>
(
platform
::
CUDAPlace
());
std
::
map
<
std
::
string
,
framework
::
LoDTensor
*>
outputs
=
{{
"y"
,
&
y
}};
engine_
->
Execute
(
inputs
,
outputs
);
auto
*
y_data_gpu
=
y_data
;
float
y_data_cpu
[
2
];
cudaMemcpy
(
y_data_cpu
,
y_data_gpu
,
sizeof
(
float
)
*
2
,
cudaMemcpyDeviceToHost
);
LOG
(
INFO
)
<<
"output value: "
<<
y_data_cpu
[
0
]
<<
", "
<<
y_data_cpu
[
1
];
}
engine_
->
Freeze
();
// PTuple<int> input_shape = {1};
// engine_->AddOpAttr("x", "input_shape", input_shape);
engine_
->
SetInputShape
(
"x"
,
{
1
,
1
,
1
,
1
});
engine_
->
Optimize
();
engine_
->
InitGraph
();
framework
::
LoDTensor
x
;
framework
::
LoDTensor
y
;
x
.
Resize
({
1
,
1
,
1
,
1
});
y
.
Resize
({
1
,
1
,
1
,
2
});
auto
*
x_data
=
x
.
mutable_data
<
float
>
(
platform
::
CUDAPlace
());
float
x_data_cpu
[]
=
{
1.
};
cudaMemcpy
(
x_data
,
x_data_cpu
,
sizeof
(
float
),
cudaMemcpyHostToDevice
);
std
::
map
<
std
::
string
,
framework
::
LoDTensor
*>
inputs
=
{{
"x"
,
&
x
}};
auto
*
y_data
=
y
.
mutable_data
<
float
>
(
platform
::
CUDAPlace
());
std
::
map
<
std
::
string
,
framework
::
LoDTensor
*>
outputs
=
{{
"y"
,
&
y
}};
engine_
->
Execute
(
inputs
,
outputs
);
auto
*
y_data_gpu
=
y_data
;
float
y_data_cpu
[
2
];
cudaMemcpy
(
y_data_cpu
,
y_data_gpu
,
sizeof
(
float
)
*
2
,
cudaMemcpyDeviceToHost
);
LOG
(
INFO
)
<<
"output value: "
<<
y_data_cpu
[
0
]
<<
", "
<<
y_data_cpu
[
1
];
}
}
// namespace anakin
}
// namespace inference
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录