未验证 提交 ee8b22fb 编写于 作者: A Aurelius84 提交者: GitHub

Add unittest with mnist model to test dygraph_to_static (#22777)

* add mnist to test dygraph_to_static  test=develop
上级 72dde4ab
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from time import time
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.optimizer import AdamOptimizer
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear
from paddle.fluid.dygraph.jit import dygraph_to_static_output
import unittest
class SimpleImgConvPool(fluid.dygraph.Layer):
def __init__(self,
num_channels,
num_filters,
filter_size,
pool_size,
pool_stride,
pool_padding=0,
pool_type='max',
global_pooling=False,
conv_stride=1,
conv_padding=0,
conv_dilation=1,
conv_groups=1,
act=None,
use_cudnn=False,
param_attr=None,
bias_attr=None):
super(SimpleImgConvPool, self).__init__()
self._conv2d = Conv2D(
num_channels=num_channels,
num_filters=num_filters,
filter_size=filter_size,
stride=conv_stride,
padding=conv_padding,
dilation=conv_dilation,
groups=conv_groups,
param_attr=None,
bias_attr=None,
act=act,
use_cudnn=use_cudnn)
self._pool2d = Pool2D(
pool_size=pool_size,
pool_type=pool_type,
pool_stride=pool_stride,
pool_padding=pool_padding,
global_pooling=global_pooling,
use_cudnn=use_cudnn)
@dygraph_to_static_output
def forward(self, inputs):
x = self._conv2d(inputs)
x = self._pool2d(x)
return x
class MNIST(fluid.dygraph.Layer):
def __init__(self):
super(MNIST, self).__init__()
self._simple_img_conv_pool_1 = SimpleImgConvPool(
1, 20, 5, 2, 2, act="relu")
self._simple_img_conv_pool_2 = SimpleImgConvPool(
20, 50, 5, 2, 2, act="relu")
self.pool_2_shape = 50 * 4 * 4
SIZE = 10
scale = (2.0 / (self.pool_2_shape**2 * SIZE))**0.5
self._fc = Linear(
self.pool_2_shape,
10,
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.NormalInitializer(
loc=0.0, scale=scale)),
act="softmax")
@dygraph_to_static_output
def forward(self, inputs, label=None):
x = self.inference(inputs)
if label is not None:
acc = fluid.layers.accuracy(input=x, label=label)
loss = fluid.layers.cross_entropy(x, label)
avg_loss = fluid.layers.mean(loss)
return x, acc, avg_loss
else:
return x
@dygraph_to_static_output
def inference(self, inputs):
x = self._simple_img_conv_pool_1(inputs)
x = self._simple_img_conv_pool_2(x)
x = fluid.layers.reshape(x, shape=[-1, self.pool_2_shape])
x = self._fc(x)
return x
class TestMNIST(unittest.TestCase):
def setUp(self):
self.epoch_num = 1
self.batch_size = 64
self.place = fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda(
) else fluid.CPUPlace()
self.train_reader = paddle.batch(
paddle.dataset.mnist.train(),
batch_size=self.batch_size,
drop_last=True)
class TestMNISTWithStaticMode(TestMNIST):
"""
Tests model when using `dygraph_to_static_output` to convert dygraph into static
model. It allows user to add customized code to train static model, such as `with`
and `Executor` statement.
"""
def test_train(self):
main_prog = fluid.Program()
with fluid.program_guard(main_prog):
mnist = MNIST()
adam = AdamOptimizer(
learning_rate=0.001, parameter_list=mnist.parameters())
exe = fluid.Executor(self.place)
start = time()
img = fluid.data(
name='img', shape=[None, 1, 28, 28], dtype='float32')
label = fluid.data(name='label', shape=[None, 1], dtype='int64')
label.stop_gradient = True
prediction, acc, avg_loss = mnist(img, label)
adam.minimize(avg_loss)
exe.run(fluid.default_startup_program())
for epoch in range(self.epoch_num):
for batch_id, data in enumerate(self.train_reader()):
dy_x_data = np.array([x[0].reshape(1, 28, 28)
for x in data]).astype('float32')
y_data = np.array(
[x[1] for x in data]).astype('int64').reshape(-1, 1)
out = exe.run(main_prog,
fetch_list=[avg_loss, acc],
feed={'img': dy_x_data,
'label': y_data})
if batch_id % 100 == 0:
print(
"Loss at epoch {} step {}: loss: {:}, acc: {}, cost: {}"
.format(epoch, batch_id,
np.array(out[0]),
np.array(out[1]), time() - start))
if batch_id == 300:
# The accuracy of mnist should converge over 0.9 after 300 batch.
accuracy = np.array(out[1])
self.assertGreater(
accuracy,
0.9,
msg="The accuracy {} of mnist should converge over 0.9 after 300 batch."
.format(accuracy))
break
# TODO: TestCase with cached program is required when building program in `for` loop.
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册