Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ee5f3641
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ee5f3641
编写于
12月 28, 2021
作者:
Z
zhaoyingli
提交者:
GitHub
12月 28, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add pass base unittest (#38504)
* add pass base unittest * update gpt model
上级
e42ed7d1
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
215 addition
and
20 deletion
+215
-20
python/paddle/fluid/tests/unittests/auto_parallel_gpt_model.py
...n/paddle/fluid/tests/unittests/auto_parallel_gpt_model.py
+1
-20
python/paddle/fluid/tests/unittests/distributed_passes/auto_parallel_pass_test_base.py
...ttests/distributed_passes/auto_parallel_pass_test_base.py
+214
-0
未找到文件。
python/paddle/fluid/tests/unittests/auto_parallel_gpt_model.py
浏览文件 @
ee5f3641
...
@@ -967,23 +967,4 @@ class GPTPretrainingCriterion(nn.Layer):
...
@@ -967,23 +967,4 @@ class GPTPretrainingCriterion(nn.Layer):
loss_mask
=
loss_mask
.
reshape
([
-
1
])
loss_mask
=
loss_mask
.
reshape
([
-
1
])
masked_lm_loss
=
paddle
.
sum
(
masked_lm_loss
.
reshape
([
-
1
])
*
loss_mask
)
masked_lm_loss
=
paddle
.
sum
(
masked_lm_loss
.
reshape
([
-
1
])
*
loss_mask
)
total_loss
=
masked_lm_loss
/
loss_mask
.
sum
()
total_loss
=
masked_lm_loss
/
loss_mask
.
sum
()
pp_total_loss
=
None
return
total_loss
loss
=
total_loss
if
"pp"
in
_global_parallel_strategy
:
total_loss
=
total_loss
masked_lm_loss
.
persistable
=
True
total_loss
.
persistable
=
True
total_loss
.
persistable
=
True
pp_total_loss
=
paddle
.
fluid
.
layers
.
fill_constant
([
1
,
],
"float32"
,
0.0
)
pp_total_loss
.
persistable
=
True
block
=
paddle
.
static
.
default_main_program
().
global_block
()
acc_steps
=
1
tmp
=
total_loss
/
acc_steps
block
.
append_op
(
type
=
"elementwise_add"
,
inputs
=
{
"X"
:
[
pp_total_loss
],
"Y"
:
[
tmp
]},
outputs
=
{
"Out"
:
[
pp_total_loss
]})
loss
=
pp_total_loss
return
loss
python/paddle/fluid/tests/unittests/distributed_passes/auto_parallel_pass_test_base.py
0 → 100644
浏览文件 @
ee5f3641
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
import
os
import
random
import
sys
import
pickle
import
shlex
import
shutil
import
inspect
import
numpy
as
np
from
collections
import
OrderedDict
from
dist_pass_test_base
import
DistPassTestBase
import
paddle.distributed.fleet
as
fleet
import
paddle.distributed.auto_parallel
as
auto
sys
.
path
.
append
(
".."
)
import
auto_parallel_gpt_model
as
modeling
from
auto_parallel_gpt_model
import
GPTModel
,
GPTForPretraining
,
GPTPretrainingCriterion
class
AutoPallelPassTestBase
(
DistPassTestBase
):
def
setUp
(
self
):
paddle
.
enable_static
()
seed
=
int
(
os
.
environ
.
get
(
'SEED'
,
-
1
))
if
seed
<=
0
:
seed
=
np
.
random
.
randint
(
low
=
1
,
high
=
1000000
,
size
=
[
1
])[
0
]
os
.
environ
[
'SEED'
]
=
str
(
seed
)
self
.
seed
=
seed
paddle
.
seed
(
self
.
seed
)
self
.
rtol
=
1e-5
self
.
atol
=
1e-8
self
.
equal_nan
=
False
self
.
init
()
def
init
(
self
):
pass
def
get_model
(
self
,
place
,
**
kwargs
):
raise
NotImplementedError
()
def
apply_passes
(
self
):
raise
NotImplementedError
()
def
apply_no_passes
(
self
):
dist_strategy
=
fleet
.
DistributedStrategy
()
dist_strategy
.
semi_auto
=
True
fleet
.
init
(
is_collective
=
True
,
strategy
=
dist_strategy
)
def
check_main
(
self
,
gpus
=
None
,
**
kwargs
):
no_pass_rets
=
self
.
_distributed_launch
(
apply_pass
=
False
,
gpus
=
gpus
,
**
kwargs
)
pass_rets
=
self
.
_distributed_launch
(
apply_pass
=
True
,
gpus
=
gpus
,
**
kwargs
)
self
.
check_results
(
no_pass_rets
,
pass_rets
)
def
_run_gpu_main
(
self
,
apply_pass
,
dump_file
,
**
kwargs
):
gpu_id
=
int
(
os
.
environ
.
get
(
'FLAGS_selected_gpus'
,
0
))
place
=
paddle
.
CUDAPlace
(
gpu_id
)
scope
=
paddle
.
static
.
Scope
()
if
apply_pass
:
self
.
apply_passes
()
else
:
self
.
apply_no_passes
()
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
(),
paddle
.
static
.
Program
()):
with
paddle
.
static
.
scope_guard
(
scope
):
with
paddle
.
fluid
.
unique_name
.
guard
():
main_prog
,
startup_prog
,
inputs
,
outputs
,
reader
=
self
.
get_model
(
place
,
**
kwargs
)
inputs
=
self
.
_to_var_names
(
main_prog
,
inputs
)
outputs
=
self
.
_to_var_names
(
main_prog
,
outputs
)
all_fetch_values
=
[]
exe
=
paddle
.
static
.
Executor
(
place
)
with
paddle
.
static
.
scope_guard
(
scope
):
exe
.
run
(
startup_prog
)
for
batch_id
,
input_data
in
enumerate
(
reader
()):
assert
len
(
input_data
)
==
len
(
inputs
),
"{} vs {}"
.
format
(
len
(
input_data
),
len
(
inputs
))
feed
=
dict
(
zip
(
inputs
,
input_data
))
fetch_values
=
exe
.
run
(
main_prog
,
feed
=
feed
,
fetch_list
=
outputs
)
if
paddle
.
distributed
.
get_rank
()
==
0
:
output_dict
=
OrderedDict
(
zip
(
outputs
,
fetch_values
))
print
(
'batch {}, outputs {}'
.
format
(
batch_id
,
output_dict
))
all_fetch_values
.
append
(
fetch_values
)
with
open
(
dump_file
,
"wb"
)
as
f
:
pickle
.
dump
(
all_fetch_values
,
f
)
def
get_gpt_model
(
self
,
strategy
,
place
,
batch_size
,
sequence_len
,
vocab_size
):
modeling
.
init_global
()
if
strategy
==
"dp"
:
modeling
.
_global_parallel_strategy
=
"dp"
modeling
.
_global_process_mesh
=
auto
.
ProcessMesh
(
mesh
=
[
0
,
1
])
elif
strategy
==
"mp"
:
modeling
.
_global_parallel_strategy
=
"mp"
modeling
.
_global_process_mesh
=
auto
.
ProcessMesh
(
mesh
=
[
0
,
1
])
elif
strategy
==
"pp"
:
modeling
.
_global_parallel_strategy
=
"pp"
modeling
.
_global_process_mesh
=
auto
.
ProcessMesh
(
mesh
=
[
0
,
1
])
modeling
.
PP_MESH_LIST
=
[
auto
.
ProcessMesh
(
mesh
=
[
0
]),
auto
.
ProcessMesh
(
mesh
=
[
1
])
]
else
:
raise
ValueError
(
"'get_gpt_model' only support dp, mp and pp."
)
tokens
=
paddle
.
static
.
data
(
name
=
"tokens"
,
shape
=
[
batch_size
,
sequence_len
],
dtype
=
'int64'
)
position_ids
=
paddle
.
static
.
data
(
name
=
"position_ids"
,
shape
=
[
batch_size
,
sequence_len
],
dtype
=
'int64'
)
attention_mask
=
paddle
.
static
.
data
(
name
=
"attention_mask"
,
shape
=
[
batch_size
,
1
,
sequence_len
,
sequence_len
],
dtype
=
'float32'
)
labels
=
paddle
.
static
.
data
(
name
=
"labels"
,
shape
=
[
batch_size
,
sequence_len
],
dtype
=
'int64'
)
loss_mask
=
paddle
.
static
.
data
(
name
=
"loss_mask"
,
shape
=
[
batch_size
,
sequence_len
],
dtype
=
'float32'
)
data_holder
=
[
tokens
,
position_ids
,
attention_mask
,
labels
,
loss_mask
]
if
modeling
.
_global_parallel_strategy
==
"dp"
:
auto
.
shard_tensor
(
tokens
,
dist_attr
=
{
"process_mesh"
:
modeling
.
_global_process_mesh
,
"dims_mapping"
:
[
0
,
-
1
]
})
elif
modeling
.
_global_parallel_strategy
==
"pp"
:
auto
.
shard_tensor
(
tokens
,
dist_attr
=
{
"process_mesh"
:
modeling
.
PP_MESH_LIST
[
0
],
"dims_mapping"
:
[
-
1
,
-
1
]
})
auto
.
shard_tensor
(
attention_mask
,
dist_attr
=
{
"process_mesh"
:
modeling
.
PP_MESH_LIST
[
0
],
"dims_mapping"
:
[
-
1
,
-
1
,
-
1
,
-
1
]
})
gpt
=
GPTModel
(
vocab_size
=
1000
,
hidden_size
=
64
,
num_hidden_layers
=
2
,
num_attention_heads
=
8
,
intermediate_size
=
256
,
hidden_act
=
"gelu"
,
hidden_dropout_prob
=
0.0
,
attention_probs_dropout_prob
=
0.0
,
max_position_embeddings
=
1024
,
type_vocab_size
=
1
,
initializer_range
=
0.02
,
pad_token_id
=
0
,
eos_token_id
=
7
,
bos_token_id
=
0
,
eol_token_id
=
3
)
model
=
GPTForPretraining
(
gpt
,
vocab_size
=
1000
,
hidden_size
=
64
,
initializer_range
=
0.02
)
preds
=
model
(
tokens
,
position_ids
,
attention_mask
)
criterion
=
GPTPretrainingCriterion
()
loss
=
criterion
(
preds
,
labels
,
loss_mask
)
optimizer
=
paddle
.
fluid
.
optimizer
.
AdamOptimizer
(
learning_rate
=
0.00001
,
beta1
=
0.9
,
beta2
=
0.999
,
epsilon
=
1e-08
,
grad_clip
=
None
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
)
startup_program
=
paddle
.
static
.
default_startup_program
()
_
,
_
,
dist_startup_prog
,
dist_main_prog
=
optimizer
.
minimize
(
loss
,
startup_program
)
def
gen_data
():
np
.
random
.
seed
(
2021
)
for
_
in
range
(
10
):
tokens
=
[]
position_ids
=
[]
attention_mask
=
[]
labels
=
[]
loss_mask
=
[]
for
_
in
range
(
batch_size
):
tokens
.
append
(
np
.
random
.
randint
(
vocab_size
,
size
=
sequence_len
))
position_ids
.
append
(
np
.
arange
(
sequence_len
))
attention_mask
.
append
([
np
.
tril
(
np
.
ones
(
sequence_len
))])
labels
.
append
(
np
.
random
.
randint
(
vocab_size
,
size
=
sequence_len
))
loss_mask
.
append
(
np
.
ones
(
sequence_len
))
yield
tokens
,
position_ids
,
attention_mask
,
labels
,
loss_mask
return
dist_main_prog
,
dist_startup_prog
,
data_holder
,
[
loss
],
gen_data
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录