Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ede8fd55
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ede8fd55
编写于
8月 25, 2023
作者:
W
wanghuancoder
提交者:
GitHub
8月 25, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix pylayer py39 mem leak (#56623)
* fix pylayer py39 mem leak
上级
5bfcb501
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
215 addition
and
193 deletion
+215
-193
python/paddle/distributed/fleet/layers/mpu/mp_layers.py
python/paddle/distributed/fleet/layers/mpu/mp_layers.py
+140
-127
python/paddle/distributed/fleet/layers/mpu/mp_ops.py
python/paddle/distributed/fleet/layers/mpu/mp_ops.py
+75
-66
未找到文件。
python/paddle/distributed/fleet/layers/mpu/mp_layers.py
浏览文件 @
ede8fd55
...
@@ -179,6 +179,136 @@ class VocabParallelEmbedding(paddle.nn.Layer):
...
@@ -179,6 +179,136 @@ class VocabParallelEmbedding(paddle.nn.Layer):
return
output
return
output
class
InnerOverlapLinear
(
paddle
.
autograd
.
PyLayer
):
@
staticmethod
def
forward
(
ctx
,
x
,
weight
,
bias
,
fuse_matmul_bias
,
mp_async_allreduce
,
mp_skip_c_identity
,
mp_fused_linear_param_grad_add
,
model_parallel_group
,
):
ctx
.
save_for_backward
(
x
,
weight
,
bias
)
ctx
.
model_parallel_group
=
model_parallel_group
ctx
.
mp_fused_linear_param_grad_add
=
mp_fused_linear_param_grad_add
if
mp_skip_c_identity
is
False
:
x
=
paddle
.
_legacy_C_ops
.
c_identity
(
x
,
'use_calc_stream'
,
True
,
'ring_id'
,
model_parallel_group
.
id
,
'use_model_parallel'
,
True
,
)
if
not
fuse_matmul_bias
:
return
paddle
.
_C_ops
.
linear
(
x
,
weight
,
bias
)
else
:
return
paddle
.
_legacy_C_ops
.
fused_gemm_epilogue
(
x
,
weight
,
bias
)
@
staticmethod
def
backward
(
ctx
,
dy
):
x
,
weight
,
bias
=
ctx
.
saved_tensor
()
dx
=
paddle
.
matmul
(
dy
,
weight
,
transpose_y
=
True
)
op_type
=
_get_reduce_op
(
ReduceOp
.
SUM
,
"_c_identity"
)
task
=
ctx
.
model_parallel_group
.
process_group
.
all_reduce
(
dx
,
op_type
,
sync_op
=
False
)
# TODO(GhostScreaming): remove it in future.
tmp
=
paddle
.
ones
([
512
])
if
ctx
.
mp_fused_linear_param_grad_add
:
if
not
is_fused_linear_param_grad_add_supported
():
raise
NotImplementedError
(
"You set mp_fused_linear_param_grad_add=True, "
"however, the paddle you are using not support this operation. "
"Please unset fused_linear_param_grad_add or use paddle compiled "
"with cuda 11.6 or higher."
)
if
bias
is
None
:
if
hasattr
(
weight
,
"main_grad"
):
(
weight
.
main_grad
,
_
,
)
=
paddle
.
_C_ops
.
fused_linear_param_grad_add
(
x
,
dy
,
weight
.
main_grad
,
None
,
True
,
False
)
task
.
wait
()
return
dx
,
None
else
:
if
weight
.
grad
is
not
None
:
(
weight
.
grad
,
_
,
)
=
paddle
.
_C_ops
.
fused_linear_param_grad_add
(
x
,
dy
,
weight
.
grad
,
None
,
False
,
False
)
task
.
wait
()
return
dx
,
None
else
:
(
dw
,
_
,
)
=
paddle
.
_C_ops
.
fused_linear_param_grad_add
(
x
,
dy
,
None
,
None
,
False
,
False
)
task
.
wait
()
return
dx
,
dw
if
hasattr
(
weight
,
"main_grad"
)
and
hasattr
(
bias
,
"main_grad"
):
(
weight
.
main_grad
,
bias
.
main_grad
,
)
=
paddle
.
_C_ops
.
fused_linear_param_grad_add
(
input
,
dy
,
weight
.
main_grad
,
bias
.
main_grad
,
True
,
True
,
)
task
.
wait
()
return
dx
,
None
,
None
else
:
if
weight
.
grad
is
not
None
:
assert
bias
.
grad
is
not
None
(
weight
.
grad
,
bias
.
grad
,
)
=
paddle
.
_C_ops
.
fused_linear_param_grad_add
(
x
,
dy
,
weight
.
grad
,
bias
.
grad
,
False
,
True
)
task
.
wait
()
return
dx
,
None
,
None
else
:
(
dw
,
dbias
,
)
=
paddle
.
_C_ops
.
fused_linear_param_grad_add
(
x
,
dy
,
None
,
None
,
False
,
True
)
task
.
wait
()
return
dx
,
dw
,
dbias
else
:
dw
=
paddle
.
matmul
(
x
.
reshape
([
-
1
,
x
.
shape
[
-
1
]]),
dy
.
reshape
([
-
1
,
dy
.
shape
[
-
1
]]),
transpose_x
=
True
,
)
if
bias
is
None
:
task
.
wait
()
return
dx
,
dw
else
:
dbias
=
paddle
.
sum
(
dy
,
axis
=
0
)
task
.
wait
()
return
dx
,
dw
,
dbias
class
ColumnParallelLinear
(
paddle
.
nn
.
Layer
):
class
ColumnParallelLinear
(
paddle
.
nn
.
Layer
):
"""Linear layer with mp parallelized(column).
"""Linear layer with mp parallelized(column).
this class is used for splitting Linear Layer in mp group, column split the weight of the Linear layer.
this class is used for splitting Linear Layer in mp group, column split the weight of the Linear layer.
...
@@ -336,133 +466,16 @@ class ColumnParallelLinear(paddle.nn.Layer):
...
@@ -336,133 +466,16 @@ class ColumnParallelLinear(paddle.nn.Layer):
# use inner api to process identity
# use inner api to process identity
def
_overlap_linear
():
def
_overlap_linear
():
fuse_matmul_bias
=
self
.
fuse_matmul_bias
return
InnerOverlapLinear
.
apply
(
mp_async_allreduce
=
self
.
mp_async_allreduce
x
,
mp_skip_c_identity
=
self
.
mp_skip_c_identity
self
.
weight
,
mp_fused_linear_param_grad_add
=
self
.
mp_fused_linear_param_grad_add
self
.
bias
,
self
.
fuse_matmul_bias
,
class
InnerOverlapLinear
(
paddle
.
autograd
.
PyLayer
):
self
.
mp_async_allreduce
,
@
staticmethod
self
.
mp_skip_c_identity
,
def
forward
(
ctx
,
x
,
weight
,
bias
):
self
.
mp_fused_linear_param_grad_add
,
ctx
.
save_for_backward
(
x
,
weight
,
bias
)
self
.
model_parallel_group
,
if
mp_skip_c_identity
is
False
:
)
x
=
paddle
.
_legacy_C_ops
.
c_identity
(
x
,
'use_calc_stream'
,
True
,
'ring_id'
,
self
.
model_parallel_group
.
id
,
'use_model_parallel'
,
True
,
)
if
not
fuse_matmul_bias
:
return
paddle
.
_C_ops
.
linear
(
x
,
weight
,
bias
)
else
:
return
paddle
.
_legacy_C_ops
.
fused_gemm_epilogue
(
x
,
weight
,
bias
)
@
staticmethod
def
backward
(
ctx
,
dy
):
x
,
weight
,
bias
=
ctx
.
saved_tensor
()
dx
=
paddle
.
matmul
(
dy
,
weight
,
transpose_y
=
True
)
op_type
=
_get_reduce_op
(
ReduceOp
.
SUM
,
"_c_identity"
)
task
=
self
.
model_parallel_group
.
process_group
.
all_reduce
(
dx
,
op_type
,
sync_op
=
False
)
# TODO(GhostScreaming): remove it in future.
tmp
=
paddle
.
ones
([
512
])
if
mp_fused_linear_param_grad_add
:
if
not
is_fused_linear_param_grad_add_supported
():
raise
NotImplementedError
(
"You set mp_fused_linear_param_grad_add=True, "
"however, the paddle you are using not support this operation. "
"Please unset fused_linear_param_grad_add or use paddle compiled "
"with cuda 11.6 or higher."
)
if
bias
is
None
:
if
hasattr
(
weight
,
"main_grad"
):
(
weight
.
main_grad
,
_
,
)
=
paddle
.
_C_ops
.
fused_linear_param_grad_add
(
x
,
dy
,
weight
.
main_grad
,
None
,
True
,
False
)
task
.
wait
()
return
dx
,
None
else
:
if
weight
.
grad
is
not
None
:
(
weight
.
grad
,
_
,
)
=
paddle
.
_C_ops
.
fused_linear_param_grad_add
(
x
,
dy
,
weight
.
grad
,
None
,
False
,
False
)
task
.
wait
()
return
dx
,
None
else
:
(
dw
,
_
,
)
=
paddle
.
_C_ops
.
fused_linear_param_grad_add
(
x
,
dy
,
None
,
None
,
False
,
False
)
task
.
wait
()
return
dx
,
dw
if
hasattr
(
weight
,
"main_grad"
)
and
hasattr
(
bias
,
"main_grad"
):
(
weight
.
main_grad
,
bias
.
main_grad
,
)
=
paddle
.
_C_ops
.
fused_linear_param_grad_add
(
input
,
dy
,
weight
.
main_grad
,
bias
.
main_grad
,
True
,
True
,
)
task
.
wait
()
return
dx
,
None
,
None
else
:
if
weight
.
grad
is
not
None
:
assert
bias
.
grad
is
not
None
(
weight
.
grad
,
bias
.
grad
,
)
=
paddle
.
_C_ops
.
fused_linear_param_grad_add
(
x
,
dy
,
weight
.
grad
,
bias
.
grad
,
False
,
True
)
task
.
wait
()
return
dx
,
None
,
None
else
:
(
dw
,
dbias
,
)
=
paddle
.
_C_ops
.
fused_linear_param_grad_add
(
x
,
dy
,
None
,
None
,
False
,
True
)
task
.
wait
()
return
dx
,
dw
,
dbias
else
:
dw
=
paddle
.
matmul
(
x
.
reshape
([
-
1
,
x
.
shape
[
-
1
]]),
dy
.
reshape
([
-
1
,
dy
.
shape
[
-
1
]]),
transpose_x
=
True
,
)
if
bias
is
None
:
task
.
wait
()
return
dx
,
dw
else
:
dbias
=
paddle
.
sum
(
dy
,
axis
=
0
)
task
.
wait
()
return
dx
,
dw
,
dbias
return
InnerOverlapLinear
.
apply
(
x
,
self
.
weight
,
self
.
bias
)
if
self
.
mp_async_allreduce
:
if
self
.
mp_async_allreduce
:
output_parallel
=
_overlap_linear
()
output_parallel
=
_overlap_linear
()
...
...
python/paddle/distributed/fleet/layers/mpu/mp_ops.py
浏览文件 @
ede8fd55
...
@@ -14,6 +14,7 @@
...
@@ -14,6 +14,7 @@
import
paddle
import
paddle
from
paddle
import
_legacy_C_ops
from
paddle
import
_legacy_C_ops
from
paddle.autograd
import
PyLayer
from
paddle.distributed
import
collective
from
paddle.distributed
import
collective
from
paddle.fluid.data_feeder
import
check_dtype
,
check_variable_and_dtype
from
paddle.fluid.data_feeder
import
check_dtype
,
check_variable_and_dtype
from
paddle.framework
import
LayerHelper
,
_create_tensor
,
in_dynamic_mode
from
paddle.framework
import
LayerHelper
,
_create_tensor
,
in_dynamic_mode
...
@@ -23,6 +24,30 @@ from paddle.nn.utils import dygraph_utils
...
@@ -23,6 +24,30 @@ from paddle.nn.utils import dygraph_utils
from
....communication.reduce
import
ReduceOp
,
_get_reduce_op
from
....communication.reduce
import
ReduceOp
,
_get_reduce_op
class
c_identity_eager
(
PyLayer
):
@
staticmethod
def
forward
(
ctx
,
tensor
,
group
,
skip_c_identity_dynamic
):
ctx
.
group
=
group
if
skip_c_identity_dynamic
:
return
tensor
else
:
return
_legacy_C_ops
.
c_identity
(
tensor
,
'use_calc_stream'
,
True
,
'ring_id'
,
group
.
id
,
'use_model_parallel'
,
True
,
)
@
staticmethod
def
backward
(
ctx
,
dy
):
op_type
=
_get_reduce_op
(
ReduceOp
.
SUM
,
"_c_identity"
)
ctx
.
group
.
process_group
.
all_reduce_on_calc_stream
(
dy
,
op_type
)
return
dy
def
_c_identity
(
tensor
,
group
=
None
,
skip_c_identity_dynamic
=
False
):
def
_c_identity
(
tensor
,
group
=
None
,
skip_c_identity_dynamic
=
False
):
"""
"""
Return a copy of the tensor, mainly used with model parallel.
Return a copy of the tensor, mainly used with model parallel.
...
@@ -40,31 +65,7 @@ def _c_identity(tensor, group=None, skip_c_identity_dynamic=False):
...
@@ -40,31 +65,7 @@ def _c_identity(tensor, group=None, skip_c_identity_dynamic=False):
ring_id
=
0
if
group
is
None
else
group
.
id
ring_id
=
0
if
group
is
None
else
group
.
id
if
in_dynamic_mode
():
if
in_dynamic_mode
():
from
paddle.autograd
import
PyLayer
return
c_identity_eager
.
apply
(
tensor
,
group
,
skip_c_identity_dynamic
)
class
c_identity_eager
(
PyLayer
):
@
staticmethod
def
forward
(
ctx
,
tensor
):
if
skip_c_identity_dynamic
:
return
tensor
else
:
return
_legacy_C_ops
.
c_identity
(
tensor
,
'use_calc_stream'
,
True
,
'ring_id'
,
group
.
id
,
'use_model_parallel'
,
True
,
)
@
staticmethod
def
backward
(
ctx
,
dy
):
op_type
=
_get_reduce_op
(
ReduceOp
.
SUM
,
"_c_identity"
)
group
.
process_group
.
all_reduce_on_calc_stream
(
dy
,
op_type
)
return
dy
return
c_identity_eager
.
apply
(
tensor
)
else
:
else
:
op_type
=
'c_identity'
op_type
=
'c_identity'
helper
=
LayerHelper
(
op_type
,
**
locals
())
helper
=
LayerHelper
(
op_type
,
**
locals
())
...
@@ -218,6 +219,49 @@ def _c_split(tensor, group=None):
...
@@ -218,6 +219,49 @@ def _c_split(tensor, group=None):
return
out
return
out
class
mp_allreduce_eager
(
PyLayer
):
@
staticmethod
def
forward
(
ctx
,
tensor
,
group
,
use_calc_stream
,
use_model_parallel
,
op
,
skip_c_identity_dynamic
,
):
ctx
.
ring_id
=
group
.
id
ctx
.
skip_c_identity_dynamic
=
skip_c_identity_dynamic
if
use_calc_stream
:
op_type
=
_get_reduce_op
(
op
,
"_mp_allreduce"
)
group
.
process_group
.
all_reduce_on_calc_stream
(
tensor
,
op_type
)
return
tensor
else
:
return
_legacy_C_ops
.
c_allreduce_sum_
(
tensor
,
'use_calc_stream'
,
use_calc_stream
,
'ring_id'
,
group
.
id
,
)
@
staticmethod
def
backward
(
ctx
,
dy
):
if
ctx
.
skip_c_identity_dynamic
:
return
dy
else
:
return
_legacy_C_ops
.
c_identity
(
dy
,
'use_calc_stream'
,
True
,
'ring_id'
,
ctx
.
ring_id
,
'use_model_parallel'
,
True
,
)
def
_mp_allreduce
(
def
_mp_allreduce
(
tensor
,
tensor
,
op
=
ReduceOp
.
SUM
,
op
=
ReduceOp
.
SUM
,
...
@@ -233,48 +277,13 @@ def _mp_allreduce(
...
@@ -233,48 +277,13 @@ def _mp_allreduce(
if
in_dynamic_mode
():
if
in_dynamic_mode
():
group
=
collective
.
_get_default_group
()
if
group
is
None
else
group
group
=
collective
.
_get_default_group
()
if
group
is
None
else
group
assert
op
==
ReduceOp
.
SUM
,
f
"Unknown parameter:
{
op
}
."
assert
op
==
ReduceOp
.
SUM
,
f
"Unknown parameter:
{
op
}
."
from
paddle.autograd
import
PyLayer
class
mp_allreduce_eager
(
PyLayer
):
@
staticmethod
def
forward
(
ctx
,
tensor
,
group
,
use_calc_stream
,
use_model_parallel
):
ctx
.
ring_id
=
group
.
id
if
use_calc_stream
:
op_type
=
_get_reduce_op
(
op
,
"_mp_allreduce"
)
group
.
process_group
.
all_reduce_on_calc_stream
(
tensor
,
op_type
)
return
tensor
else
:
return
_legacy_C_ops
.
c_allreduce_sum_
(
tensor
,
'use_calc_stream'
,
use_calc_stream
,
'ring_id'
,
ring_id
,
)
@
staticmethod
def
backward
(
ctx
,
dy
):
if
skip_c_identity_dynamic
:
return
dy
else
:
return
_legacy_C_ops
.
c_identity
(
dy
,
'use_calc_stream'
,
True
,
'ring_id'
,
ctx
.
ring_id
,
'use_model_parallel'
,
True
,
)
return
mp_allreduce_eager
.
apply
(
return
mp_allreduce_eager
.
apply
(
tensor
,
group
,
use_calc_stream
,
use_model_parallel
tensor
,
group
,
use_calc_stream
,
use_model_parallel
,
op
,
skip_c_identity_dynamic
,
)
)
else
:
else
:
ring_id
=
0
if
group
is
None
else
group
.
id
ring_id
=
0
if
group
is
None
else
group
.
id
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录