未验证 提交 ed9bac2f 编写于 作者: R RedContritio 提交者: GitHub

support auto generate static for truncated_gaussian_random (#52540)

上级 57069f8b
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/truncated_gaussian_random_op.h"
#include <limits>
#include <random>
#include <vector>
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/core/generator.h"
#include "paddle/phi/infermeta/nullary.h"
namespace paddle {
namespace operators {
class TruncatedGaussianRandomOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
phi::KernelKey GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return phi::KernelKey(
static_cast<framework::proto::VarType::Type>(ctx.Attr<int>("dtype")),
ctx.GetPlace());
}
};
class TruncatedGaussianRandomOpMaker
: public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddOutput("Out", "Output tensor of truncated gaussian random op.");
AddAttr<std::vector<int>>("shape",
"(vector<int>) "
"The dimension of random tensor.");
AddAttr<float>("mean",
"(float, default 0.0) "
"mean of random tensor.")
.SetDefault(.0f);
AddAttr<float>("std",
"(float, default 1.0) "
"std of random tensor.")
.SetDefault(1.0f);
AddAttr<int>("seed",
"(int, default 0) "
"Random seed of generator."
"0 means use system wide seed."
"Note that if seed is not 0, this operator will always "
"generate the same random numbers every time.")
.SetDefault(0);
AddAttr<int>("dtype",
"(int, default 5(FP32)) "
"Output data type.")
.SetDefault(framework::proto::VarType::FP32);
AddComment(R"DOC(
TruncatedGaussianRandom Operator.
Used to initialize tensors with truncated gaussian random generator.
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
DECLARE_INFER_SHAPE_FUNCTOR(
truncated_gaussian_random,
TruncatedGaussianRandomInferShapeFunctor,
PD_INFER_META(phi::TruncatedGaussianRandomInferMeta));
REGISTER_OPERATOR(
truncated_gaussian_random,
ops::TruncatedGaussianRandomOp,
ops::TruncatedGaussianRandomOpMaker,
paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>,
TruncatedGaussianRandomInferShapeFunctor);
...@@ -294,7 +294,6 @@ register_unity_group( ...@@ -294,7 +294,6 @@ register_unity_group(
mkldnn/transpose_mkldnn_op.cc mkldnn/transpose_mkldnn_op.cc
tree_conv_op.cc tree_conv_op.cc
tril_triu_op.cc tril_triu_op.cc
truncated_gaussian_random_op.cc
unbind_op.cc unbind_op.cc
unfold_op.cc) unfold_op.cc)
register_unity_group( register_unity_group(
...@@ -544,7 +543,6 @@ register_unity_group( ...@@ -544,7 +543,6 @@ register_unity_group(
row_conv_op.cu row_conv_op.cu
tree_conv_op.cu tree_conv_op.cu
tril_triu_op.cu tril_triu_op.cu
truncated_gaussian_random_op.cu
unfold_op.cu unfold_op.cu
arg_min_op.cu arg_min_op.cu
crop_tensor_op.cu) crop_tensor_op.cu)
......
...@@ -2117,6 +2117,10 @@ ...@@ -2117,6 +2117,10 @@
outputs : outputs :
out : Out out : Out
- op : truncated_gaussian_random
outputs :
out : Out
- op : unbind - op : unbind
inputs : inputs :
input : X input : X
......
...@@ -310,6 +310,17 @@ ...@@ -310,6 +310,17 @@
param : [row, col, offset, dtype] param : [row, col, offset, dtype]
data_type : dtype data_type : dtype
- op : truncated_gaussian_random
args : (int[] shape, float mean = .0f, float std = 1.0f, int seed = 0, DataType dtype=DataType::FLOAT32)
output : Tensor(out)
infer_meta :
func : TruncatedGaussianRandomInferMeta
param : [shape, mean, std, seed, dtype]
kernel :
func : truncated_gaussian_random
param : [shape, mean, std, seed, dtype]
data_type : dtype
- op : uniform - op : uniform
args : (IntArray shape = {}, DataType dtype = DataType::FLOAT32, Scalar min = -1.0f, Scalar max = 1.0f, int seed = 0, int diag_num = 0, int diag_step = 0, float diag_val = 1.0f) args : (IntArray shape = {}, DataType dtype = DataType::FLOAT32, Scalar min = -1.0f, Scalar max = 1.0f, int seed = 0, int diag_num = 0, int diag_step = 0, float diag_val = 1.0f)
output : Tensor(out) output : Tensor(out)
......
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/core/compat/op_utils.h"
namespace phi {
KernelSignature TruncatedGaussianRandomOpArgumentMapping(
const ArgumentMappingContext& ctx) {
return KernelSignature("truncated_gaussian_random",
{},
{"shape", "mean", "std", "seed", "dtype"},
{"Out"});
}
} // namespace phi
PD_REGISTER_ARG_MAPPING_FN(truncated_gaussian_random,
phi::TruncatedGaussianRandomOpArgumentMapping);
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册