Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ed971564
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ed971564
编写于
4月 09, 2019
作者:
K
Kaipeng Deng
提交者:
GitHub
4月 09, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #16439 from heavengate/resize_scale
add attr scale. test=develop
上级
1a21d08f
c7876e8c
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
236 addition
and
65 deletion
+236
-65
paddle/fluid/API.spec
paddle/fluid/API.spec
+3
-3
paddle/fluid/operators/interpolate_op.cc
paddle/fluid/operators/interpolate_op.cc
+12
-2
paddle/fluid/operators/interpolate_op.cu
paddle/fluid/operators/interpolate_op.cu
+24
-13
paddle/fluid/operators/interpolate_op.h
paddle/fluid/operators/interpolate_op.h
+25
-10
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+40
-29
python/paddle/fluid/tests/unittests/test_bilinear_interp_op.py
...n/paddle/fluid/tests/unittests/test_bilinear_interp_op.py
+69
-6
python/paddle/fluid/tests/unittests/test_nearest_interp_op.py
...on/paddle/fluid/tests/unittests/test_nearest_interp_op.py
+63
-2
未找到文件。
paddle/fluid/API.spec
浏览文件 @
ed971564
...
...
@@ -155,10 +155,10 @@ paddle.fluid.layers.label_smooth (ArgSpec(args=['label', 'prior_dist', 'epsilon'
paddle.fluid.layers.roi_pool (ArgSpec(args=['input', 'rois', 'pooled_height', 'pooled_width', 'spatial_scale'], varargs=None, keywords=None, defaults=(1, 1, 1.0)), ('document', 'c317aa595deb31649083c8faa91cdb97'))
paddle.fluid.layers.roi_align (ArgSpec(args=['input', 'rois', 'pooled_height', 'pooled_width', 'spatial_scale', 'sampling_ratio', 'name'], varargs=None, keywords=None, defaults=(1, 1, 1.0, -1, None)), ('document', '12c5bbb8b38c42e623fbc47611d766e1'))
paddle.fluid.layers.dice_loss (ArgSpec(args=['input', 'label', 'epsilon'], varargs=None, keywords=None, defaults=(1e-05,)), ('document', '1ba0508d573f65feecf3564dce22aa1d'))
paddle.fluid.layers.image_resize (ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'resample', 'actual_shape', 'align_corners', 'align_mode'], varargs=None, keywords=None, defaults=(None, None, None, 'BILINEAR', None, True, 1)), ('document', '
7a1966d7c3a48f1fc0881cdaf5d83b0b
'))
paddle.fluid.layers.image_resize (ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'resample', 'actual_shape', 'align_corners', 'align_mode'], varargs=None, keywords=None, defaults=(None, None, None, 'BILINEAR', None, True, 1)), ('document', '
d1b08c11bb9277386fcf6ae70b6622d1
'))
paddle.fluid.layers.image_resize_short (ArgSpec(args=['input', 'out_short_len', 'resample'], varargs=None, keywords=None, defaults=('BILINEAR',)), ('document', '06211aefc50c5a3e940d7204d859cdf7'))
paddle.fluid.layers.resize_bilinear (ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'actual_shape', 'align_corners', 'align_mode'], varargs=None, keywords=None, defaults=(None, None, None, None, True, 1)), ('document', '
e4fb4ed511b2293b8f04f7e872afbfd7
'))
paddle.fluid.layers.resize_nearest (ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'actual_shape', 'align_corners'], varargs=None, keywords=None, defaults=(None, None, None, None, True)), ('document', '
735fa9758a6d7ff3b47d7b827f961c1d
'))
paddle.fluid.layers.resize_bilinear (ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'actual_shape', 'align_corners', 'align_mode'], varargs=None, keywords=None, defaults=(None, None, None, None, True, 1)), ('document', '
c45591fbc4f64a178fbca219e1546a58
'))
paddle.fluid.layers.resize_nearest (ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'actual_shape', 'align_corners'], varargs=None, keywords=None, defaults=(None, None, None, None, True)), ('document', '
ae6d73cdc7f3a138d8a338ecdb33c1ae
'))
paddle.fluid.layers.gather (ArgSpec(args=['input', 'index'], varargs=None, keywords=None, defaults=None), ('document', '98f1c86716b9b7f4dda83f20e2adeee2'))
paddle.fluid.layers.scatter (ArgSpec(args=['input', 'index', 'updates', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '65f8e9d8ddfd0b412f940579c4faa342'))
paddle.fluid.layers.sequence_scatter (ArgSpec(args=['input', 'index', 'updates', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '15b522457dfef103f0c20ca9d397678b'))
...
...
paddle/fluid/operators/interpolate_op.cc
浏览文件 @
ed971564
...
...
@@ -37,10 +37,19 @@ class InterpolateOp : public framework::OperatorWithKernel {
"Interpolation method can only be
\"
bilinear
\"
or
\"
nearest
\"
."
);
auto
dim_x
=
ctx
->
GetInputDim
(
"X"
);
// NCHW format
int
out_h
=
ctx
->
Attrs
().
Get
<
int
>
(
"out_h"
);
int
out_w
=
ctx
->
Attrs
().
Get
<
int
>
(
"out_w"
);
PADDLE_ENFORCE_EQ
(
dim_x
.
size
(),
4
,
"X's dimension must be 4"
);
int
out_h
,
out_w
;
float
scale
=
ctx
->
Attrs
().
Get
<
float
>
(
"scale"
);
if
(
scale
>
0
)
{
// round down
out_h
=
static_cast
<
int
>
(
dim_x
[
2
]
*
scale
);
out_w
=
static_cast
<
int
>
(
dim_x
[
3
]
*
scale
);
}
else
{
out_h
=
ctx
->
Attrs
().
Get
<
int
>
(
"out_h"
);
out_w
=
ctx
->
Attrs
().
Get
<
int
>
(
"out_w"
);
}
if
(
ctx
->
HasInput
(
"OutSize"
)
&&
ctx
->
IsRuntime
())
{
auto
out_size_dim
=
ctx
->
GetInputDim
(
"OutSize"
);
PADDLE_ENFORCE_EQ
(
out_size_dim
.
size
(),
1
,
...
...
@@ -77,6 +86,7 @@ class InterpolateOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
int
>
(
"out_h"
,
"output height of interpolate op."
);
AddAttr
<
int
>
(
"out_w"
,
"output width of interpolate op."
);
AddAttr
<
float
>
(
"scale"
,
"scale factor of interpolate op."
).
SetDefault
(
0.
);
AddAttr
<
std
::
string
>
(
"interp_method"
,
"(string, default
\"
bilinear
\"
), interpolation "
"method, can be
\"
bilinear
\"
for "
...
...
paddle/fluid/operators/interpolate_op.cu
浏览文件 @
ed971564
...
...
@@ -192,9 +192,21 @@ class InterpolateOpCUDAKernel : public framework::OpKernel<T> {
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
*
input_data
=
input
->
data
<
T
>
();
int
n
=
input
->
dims
()[
0
];
int
c
=
input
->
dims
()[
1
];
int
in_h
=
input
->
dims
()[
2
];
int
in_w
=
input
->
dims
()[
3
];
auto
interp_method
=
ctx
.
Attr
<
std
::
string
>
(
"interp_method"
);
int
out_h
=
ctx
.
Attr
<
int
>
(
"out_h"
);
int
out_w
=
ctx
.
Attr
<
int
>
(
"out_w"
);
float
scale
=
ctx
.
Attr
<
float
>
(
"scale"
);
if
(
scale
>
0
)
{
out_h
=
in_h
*
scale
;
out_w
=
in_w
*
scale
;
}
auto
out_size
=
ctx
.
Input
<
Tensor
>
(
"OutSize"
);
if
(
out_size
!=
nullptr
)
{
Tensor
sizes
;
...
...
@@ -207,11 +219,6 @@ class InterpolateOpCUDAKernel : public framework::OpKernel<T> {
bool
align_corners
=
ctx
.
Attr
<
bool
>
(
"align_corners"
);
int
align_mode
=
ctx
.
Attr
<
int
>
(
"align_mode"
);
int
n
=
input
->
dims
()[
0
];
int
c
=
input
->
dims
()[
1
];
int
in_h
=
input
->
dims
()[
2
];
int
in_w
=
input
->
dims
()[
3
];
auto
*
output_data
=
output
->
mutable_data
<
T
>
({
n
,
c
,
out_h
,
out_w
},
ctx
.
GetPlace
());
...
...
@@ -268,14 +275,20 @@ class InterpolateGradOpCUDAKernel : public framework::OpKernel<T> {
math
::
SetConstant
<
platform
::
CUDADeviceContext
,
T
>
zero
;
zero
(
device_ctx
,
input_grad
,
static_cast
<
T
>
(
0.0
));
int
n
=
input_grad
->
dims
()[
0
];
int
c
=
input_grad
->
dims
()[
1
];
int
in_h
=
input_grad
->
dims
()[
2
];
int
in_w
=
input_grad
->
dims
()[
3
];
auto
interp_method
=
ctx
.
Attr
<
std
::
string
>
(
"interp_method"
);
int
out_h
=
ctx
.
Attr
<
int
>
(
"out_h"
);
int
out_w
=
ctx
.
Attr
<
int
>
(
"out_w"
);
float
scale
=
ctx
.
Attr
<
float
>
(
"scale"
);
if
(
scale
>
0
)
{
out_h
=
in_h
*
scale
;
out_w
-
in_w
*
scale
;
}
auto
out_size
=
ctx
.
Input
<
Tensor
>
(
"OutSize"
);
bool
align_corners
=
ctx
.
Attr
<
bool
>
(
"align_corners"
);
int
align_mode
=
ctx
.
Attr
<
int
>
(
"align_mode"
);
if
(
out_size
!=
nullptr
)
{
Tensor
sizes
;
framework
::
TensorCopy
(
*
out_size
,
platform
::
CPUPlace
(),
&
sizes
);
...
...
@@ -284,10 +297,8 @@ class InterpolateGradOpCUDAKernel : public framework::OpKernel<T> {
out_w
=
size_data
[
1
];
}
int
n
=
input_grad
->
dims
()[
0
];
int
c
=
input_grad
->
dims
()[
1
];
int
in_h
=
input_grad
->
dims
()[
2
];
int
in_w
=
input_grad
->
dims
()[
3
];
bool
align_corners
=
ctx
.
Attr
<
bool
>
(
"align_corners"
);
int
align_mode
=
ctx
.
Attr
<
int
>
(
"align_mode"
);
int
in_hw
=
in_h
*
in_w
;
int
out_hw
=
out_h
*
out_w
;
...
...
paddle/fluid/operators/interpolate_op.h
浏览文件 @
ed971564
...
...
@@ -163,9 +163,21 @@ class InterpolateKernel : public framework::OpKernel<T> {
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
const
int
n
=
input
->
dims
()[
0
];
const
int
c
=
input
->
dims
()[
1
];
const
int
in_h
=
input
->
dims
()[
2
];
const
int
in_w
=
input
->
dims
()[
3
];
std
::
string
interp_method
=
ctx
.
Attr
<
std
::
string
>
(
"interp_method"
);
int
out_h
=
ctx
.
Attr
<
int
>
(
"out_h"
);
int
out_w
=
ctx
.
Attr
<
int
>
(
"out_w"
);
float
scale
=
ctx
.
Attr
<
float
>
(
"scale"
);
if
(
scale
>
0
)
{
out_h
=
static_cast
<
int
>
(
in_h
*
scale
);
out_w
=
static_cast
<
int
>
(
in_w
*
scale
);
}
auto
out_size
=
ctx
.
Input
<
Tensor
>
(
"OutSize"
);
if
(
out_size
!=
nullptr
)
{
auto
out_size_data
=
out_size
->
data
<
int
>
();
...
...
@@ -175,11 +187,6 @@ class InterpolateKernel : public framework::OpKernel<T> {
bool
align_corners
=
ctx
.
Attr
<
bool
>
(
"align_corners"
);
int
align_mode
=
ctx
.
Attr
<
int
>
(
"align_mode"
);
const
int
n
=
input
->
dims
()[
0
];
const
int
c
=
input
->
dims
()[
1
];
const
int
in_h
=
input
->
dims
()[
2
];
const
int
in_w
=
input
->
dims
()[
3
];
output
->
mutable_data
<
T
>
({
n
,
c
,
out_h
,
out_w
},
ctx
.
GetPlace
());
auto
&
device_ctx
=
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>();
...
...
@@ -221,23 +228,31 @@ class InterpolateGradKernel : public framework::OpKernel<T> {
auto
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
output_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
const
int
n
=
input
->
dims
()[
0
];
const
int
c
=
input
->
dims
()[
1
];
const
int
in_h
=
input
->
dims
()[
2
];
const
int
in_w
=
input
->
dims
()[
3
];
std
::
string
interp_method
=
ctx
.
Attr
<
std
::
string
>
(
"interp_method"
);
int
out_h
=
ctx
.
Attr
<
int
>
(
"out_h"
);
int
out_w
=
ctx
.
Attr
<
int
>
(
"out_w"
);
float
scale
=
ctx
.
Attr
<
float
>
(
"scale"
);
if
(
scale
>
0
)
{
out_h
=
static_cast
<
int
>
(
in_h
*
scale
);
out_w
=
static_cast
<
int
>
(
in_w
*
scale
);
}
auto
out_size
=
ctx
.
Input
<
Tensor
>
(
"OutSize"
);
if
(
out_size
!=
nullptr
)
{
auto
out_size_data
=
out_size
->
data
<
int
>
();
out_h
=
out_size_data
[
0
];
out_w
=
out_size_data
[
1
];
}
bool
align_corners
=
ctx
.
Attr
<
bool
>
(
"align_corners"
);
int
align_mode
=
ctx
.
Attr
<
int
>
(
"align_mode"
);
const
int
n
=
input
->
dims
()[
0
];
const
int
c
=
input
->
dims
()[
1
];
const
int
in_h
=
input
->
dims
()[
2
];
const
int
in_w
=
input
->
dims
()[
3
];
input_grad
->
mutable_data
<
T
>
({
n
,
c
,
in_h
,
in_w
},
ctx
.
GetPlace
());
auto
&
device_ctx
=
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>();
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
ed971564
...
...
@@ -7138,10 +7138,10 @@ def image_resize(input,
out_shape(list|tuple|Variable|None): Output shape of image resize
layer, the shape is (out_h, out_w).
Default: None
scale(float|None): The multiplier for the input height or width.
At least one of out_shape or scale must be set.
And out_shape has a higher priority than scale.
Default: None
scale(float|None): The multiplier for the input height or width.
At
least one of :attr:`out_shape` or :attr:`scale` must be set.
And :attr:`out_shape` has a higher priority than :attr:`scale`.
Default: None.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
...
...
@@ -7179,6 +7179,7 @@ def image_resize(input,
or 'NEAREST' currently.
ValueError: One of out_shape and scale must not be None.
ValueError: out_shape length should be 2.
ValueError: scale should be greater than zero.
TypeError: align_corners shoule be a bool value
ValueError: align_mode can only be '0' or '1'
...
...
@@ -7210,26 +7211,36 @@ def image_resize(input,
def
_is_list_or_turple_
(
data
):
return
(
isinstance
(
data
,
list
)
or
isinstance
(
data
,
tuple
))
out_h
=
0
out_w
=
0
inputs
=
{
"X"
:
input
}
attrs
=
{
"out_h"
:
0
,
"out_w"
:
0
,
"interp_method"
:
resample_type
,
"align_corners"
:
align_corners
,
"align_mode"
:
align_mode
}
if
out_shape
is
not
None
:
if
isinstance
(
out_shape
,
Variable
):
warnings
.
warn
(
"out_shape as Variable type is deprecated,
\
it is recommended to use actual_shape instead of
\
out_shape to specify output shape dynamically."
)
inputs
[
'OutSize'
]
=
out_shape
elif
not
(
_is_list_or_turple_
(
out_shape
)):
raise
TypeError
(
"out_shape should be a list or tuple or Variable."
)
elif
len
(
out_shape
)
!=
2
:
raise
ValueError
(
"out_shape length should be 2."
)
out_shape
=
list
(
map
(
int
,
out_shape
))
out_h
=
out_shape
[
0
]
out_w
=
out_shape
[
1
]
else
:
if
not
(
_is_list_or_turple_
(
out_shape
)):
raise
TypeError
(
"out_shape should be a list or tuple or Variable."
)
if
len
(
out_shape
)
!=
2
:
raise
ValueError
(
"out_shape length should be 2."
)
out_shape
=
list
(
map
(
int
,
out_shape
))
attrs
[
'out_h'
]
=
out_shape
[
0
]
attrs
[
'out_w'
]
=
out_shape
[
1
]
else
:
out_h
=
int
(
input
.
shape
[
2
]
*
scale
)
out_w
=
int
(
input
.
shape
[
3
]
*
scale
)
if
scale
<=
0
:
raise
ValueError
(
"scale should be greater than zero."
)
attrs
[
'scale'
]
=
float
(
scale
)
if
isinstance
(
actual_shape
,
Variable
):
inputs
[
"OutSize"
]
=
actual_shape
...
...
@@ -7241,13 +7252,7 @@ def image_resize(input,
type
=
'{}_interp'
.
format
(
resample_type
),
inputs
=
inputs
,
outputs
=
{
"Out"
:
out
},
attrs
=
{
"out_h"
:
out_h
,
"out_w"
:
out_w
,
"interp_method"
:
resample_type
,
"align_corners"
:
align_corners
,
"align_mode"
:
align_mode
})
attrs
=
attrs
)
return
out
...
...
@@ -7315,11 +7320,14 @@ def resize_bilinear(input,
Args:
input(${x_type}): ${x_comment}.
out_shape(${out_size_type}): ${out_size_comment}.
out_shape(list|tuple|Variable|None): Output shape of resize bilinear
layer, the shape is (out_h, out_w).
Default: None
scale(float|None): The multiplier for the input height or width. At
least one of out_shape or scale must be set. And out_shape has
a higher priority than scale. Default: None.
least one of :attr:`out_shape` or :attr:`scale` must be set.
And :attr:`out_shape` has a higher priority than :attr:`scale`.
Default: None.
name(str|None): The output variable name.
actual_shape(Variable): An optional input to specify output shape
...
...
@@ -7406,11 +7414,14 @@ def resize_nearest(input,
Args:
input(${x_type}): ${x_comment}.
out_shape(${out_size_type}): ${out_size_comment}.
out_shape(list|tuple|Variable|None): Output shape of resize nearest
layer, the shape is (out_h, out_w).
Default: None
scale(float|None): The multiplier for the input height or width. At
least one of out_shape or scale must be set. And out_shape has
a higher priority than scale. Default: None.
least one of :attr:`out_shape` or :attr:`scale` must be set.
And :attr:`out_shape` has a higher priority than :attr:`scale`.
Default: None.
name(str|None): The output variable name.
actual_shape(Variable): An optional input to specify output shape
...
...
python/paddle/fluid/tests/unittests/test_bilinear_interp_op.py
浏览文件 @
ed971564
...
...
@@ -91,17 +91,26 @@ class TestBilinearInterpOp(OpTest):
self
.
op_type
=
"bilinear_interp"
input_np
=
np
.
random
.
random
(
self
.
input_shape
).
astype
(
"float32"
)
output_np
=
bilinear_interp_np
(
input_np
,
self
.
out_h
,
self
.
out_w
,
self
.
out_size
,
self
.
actual_shape
,
self
.
align_corners
,
self
.
align_mode
)
if
self
.
scale
>
0
:
out_h
=
int
(
self
.
input_shape
[
2
]
*
self
.
scale
)
out_w
=
int
(
self
.
input_shape
[
3
]
*
self
.
scale
)
else
:
out_h
=
self
.
out_h
out_w
=
self
.
out_w
output_np
=
bilinear_interp_np
(
input_np
,
out_h
,
out_w
,
self
.
out_size
,
self
.
actual_shape
,
self
.
align_corners
,
self
.
align_mode
)
self
.
inputs
=
{
'X'
:
input_np
}
if
self
.
out_size
is
not
None
:
self
.
inputs
[
'OutSize'
]
=
self
.
out_size
if
self
.
actual_shape
is
not
None
:
self
.
inputs
[
'OutSize'
]
=
self
.
actual_shape
self
.
attrs
=
{
'out_h'
:
self
.
out_h
,
'out_w'
:
self
.
out_w
,
'scale'
:
self
.
scale
,
'interp_method'
:
self
.
interp_method
,
'align_corners'
:
self
.
align_corners
,
'align_mode'
:
self
.
align_mode
...
...
@@ -119,6 +128,7 @@ class TestBilinearInterpOp(OpTest):
self
.
input_shape
=
[
2
,
3
,
4
,
4
]
self
.
out_h
=
2
self
.
out_w
=
2
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
3
,
3
]).
astype
(
"int32"
)
self
.
align_corners
=
True
self
.
align_mode
=
1
...
...
@@ -130,6 +140,7 @@ class TestBilinearInterpCase1(TestBilinearInterpOp):
self
.
input_shape
=
[
4
,
1
,
7
,
8
]
self
.
out_h
=
1
self
.
out_w
=
1
self
.
scale
=
0.
self
.
align_corners
=
True
self
.
align_mode
=
1
...
...
@@ -140,6 +151,7 @@ class TestBilinearInterpCase2(TestBilinearInterpOp):
self
.
input_shape
=
[
3
,
3
,
9
,
6
]
self
.
out_h
=
12
self
.
out_w
=
12
self
.
scale
=
0.
self
.
align_corners
=
True
self
.
align_mode
=
1
...
...
@@ -150,6 +162,7 @@ class TestBilinearInterpCase3(TestBilinearInterpOp):
self
.
input_shape
=
[
1
,
1
,
128
,
64
]
self
.
out_h
=
64
self
.
out_w
=
128
self
.
scale
=
0.
self
.
align_corners
=
True
self
.
align_mode
=
1
...
...
@@ -160,6 +173,7 @@ class TestBilinearInterpCase4(TestBilinearInterpOp):
self
.
input_shape
=
[
4
,
1
,
7
,
8
]
self
.
out_h
=
1
self
.
out_w
=
1
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
2
,
2
]).
astype
(
"int32"
)
self
.
align_corners
=
True
self
.
align_mode
=
1
...
...
@@ -171,6 +185,7 @@ class TestBilinearInterpCase5(TestBilinearInterpOp):
self
.
input_shape
=
[
3
,
3
,
9
,
6
]
self
.
out_h
=
12
self
.
out_w
=
12
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
11
,
11
]).
astype
(
"int32"
)
self
.
align_corners
=
True
self
.
align_mode
=
1
...
...
@@ -182,6 +197,7 @@ class TestBilinearInterpCase6(TestBilinearInterpOp):
self
.
input_shape
=
[
1
,
1
,
128
,
64
]
self
.
out_h
=
64
self
.
out_w
=
128
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
65
,
129
]).
astype
(
"int32"
)
self
.
align_corners
=
True
self
.
align_mode
=
1
...
...
@@ -193,6 +209,7 @@ class TestBilinearInterpActualShape(TestBilinearInterpOp):
self
.
input_shape
=
[
3
,
2
,
32
,
16
]
self
.
out_h
=
64
self
.
out_w
=
32
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
66
,
40
]).
astype
(
"int32"
)
self
.
align_corners
=
True
self
.
align_mode
=
1
...
...
@@ -206,15 +223,25 @@ class TestBilinearInterpOpUint8(OpTest):
self
.
op_type
=
"bilinear_interp"
input_np
=
np
.
random
.
randint
(
low
=
0
,
high
=
256
,
size
=
self
.
input_shape
).
astype
(
"uint8"
)
output_np
=
bilinear_interp_np
(
input_np
,
self
.
out_h
,
self
.
out_w
,
self
.
out_size
,
self
.
actual_shape
,
self
.
align_corners
,
self
.
align_mode
)
if
self
.
scale
>
0
:
out_h
=
int
(
self
.
input_shape
[
2
]
*
self
.
scale
)
out_w
=
int
(
self
.
input_shape
[
3
]
*
self
.
scale
)
else
:
out_h
=
self
.
out_h
out_w
=
self
.
out_w
output_np
=
bilinear_interp_np
(
input_np
,
out_h
,
out_w
,
self
.
out_size
,
self
.
actual_shape
,
self
.
align_corners
,
self
.
align_mode
)
self
.
inputs
=
{
'X'
:
input_np
}
if
self
.
out_size
is
not
None
:
self
.
inputs
[
'OutSize'
]
=
self
.
out_size
self
.
attrs
=
{
'out_h'
:
self
.
out_h
,
'out_w'
:
self
.
out_w
,
'scale'
:
self
.
scale
,
'interp_method'
:
self
.
interp_method
,
'align_corners'
:
self
.
align_corners
,
'align_mode'
:
self
.
align_mode
...
...
@@ -229,6 +256,7 @@ class TestBilinearInterpOpUint8(OpTest):
self
.
input_shape
=
[
1
,
3
,
9
,
6
]
self
.
out_h
=
10
self
.
out_w
=
9
self
.
scale
=
0.
self
.
align_corners
=
True
self
.
align_mode
=
1
...
...
@@ -239,6 +267,7 @@ class TestBilinearInterpCase1Uint8(TestBilinearInterpOpUint8):
self
.
input_shape
=
[
2
,
3
,
128
,
64
]
self
.
out_h
=
120
self
.
out_w
=
50
self
.
scale
=
0.
self
.
align_corners
=
True
self
.
align_mode
=
1
...
...
@@ -249,6 +278,7 @@ class TestBilinearInterpCase2Uint8(TestBilinearInterpOpUint8):
self
.
input_shape
=
[
4
,
1
,
7
,
8
]
self
.
out_h
=
5
self
.
out_w
=
13
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
6
,
15
]).
astype
(
"int32"
)
self
.
align_corners
=
True
self
.
align_mode
=
1
...
...
@@ -272,5 +302,38 @@ class TestBilinearInterpWithMethod3(TestBilinearInterpOp):
self
.
align_mode
=
0
class
TestBilinearInterpScale1
(
TestBilinearInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'bilinear'
self
.
input_shape
=
[
2
,
3
,
16
,
32
]
self
.
out_h
=
60
self
.
out_w
=
25
self
.
scale
=
2.
self
.
align_corners
=
True
self
.
align_mode
=
1
class
TestBilinearInterpScale2
(
TestBilinearInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'bilinear'
self
.
input_shape
=
[
2
,
3
,
16
,
32
]
self
.
out_h
=
60
self
.
out_w
=
25
self
.
scale
=
1.
self
.
align_corners
=
True
self
.
align_mode
=
1
class
TestBilinearInterpScale3
(
TestBilinearInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'bilinear'
self
.
input_shape
=
[
2
,
3
,
16
,
32
]
self
.
out_h
=
60
self
.
out_w
=
25
self
.
scale
=
1.5
self
.
align_corners
=
True
self
.
align_mode
=
1
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_nearest_interp_op.py
浏览文件 @
ed971564
...
...
@@ -73,7 +73,14 @@ class TestNearestInterpOp(OpTest):
self
.
op_type
=
"nearest_interp"
input_np
=
np
.
random
.
random
(
self
.
input_shape
).
astype
(
"float32"
)
output_np
=
nearest_neighbor_interp_np
(
input_np
,
self
.
out_h
,
self
.
out_w
,
if
self
.
scale
>
0
:
out_h
=
int
(
self
.
input_shape
[
2
]
*
self
.
scale
)
out_w
=
int
(
self
.
input_shape
[
3
]
*
self
.
scale
)
else
:
out_h
=
self
.
out_h
out_w
=
self
.
out_w
output_np
=
nearest_neighbor_interp_np
(
input_np
,
out_h
,
out_w
,
self
.
out_size
,
self
.
actual_shape
,
self
.
align_corners
)
self
.
inputs
=
{
'X'
:
input_np
}
...
...
@@ -84,6 +91,7 @@ class TestNearestInterpOp(OpTest):
self
.
attrs
=
{
'out_h'
:
self
.
out_h
,
'out_w'
:
self
.
out_w
,
'scale'
:
self
.
scale
,
'interp_method'
:
self
.
interp_method
,
'align_corners'
:
self
.
align_corners
,
}
...
...
@@ -100,6 +108,7 @@ class TestNearestInterpOp(OpTest):
self
.
input_shape
=
[
2
,
3
,
4
,
4
]
self
.
out_h
=
2
self
.
out_w
=
2
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
3
,
3
]).
astype
(
"int32"
)
self
.
align_corners
=
True
...
...
@@ -110,6 +119,7 @@ class TestNearestNeighborInterpCase1(TestNearestInterpOp):
self
.
input_shape
=
[
4
,
1
,
7
,
8
]
self
.
out_h
=
1
self
.
out_w
=
1
self
.
scale
=
0.
self
.
align_corners
=
True
...
...
@@ -119,6 +129,7 @@ class TestNearestNeighborInterpCase2(TestNearestInterpOp):
self
.
input_shape
=
[
3
,
3
,
9
,
6
]
self
.
out_h
=
12
self
.
out_w
=
12
self
.
scale
=
0.
self
.
align_corners
=
True
...
...
@@ -128,6 +139,7 @@ class TestNearestNeighborInterpCase3(TestNearestInterpOp):
self
.
input_shape
=
[
1
,
1
,
128
,
64
]
self
.
out_h
=
64
self
.
out_w
=
128
self
.
scale
=
0.
self
.
align_corners
=
True
...
...
@@ -137,6 +149,7 @@ class TestNearestNeighborInterpCase4(TestNearestInterpOp):
self
.
input_shape
=
[
4
,
1
,
7
,
8
]
self
.
out_h
=
1
self
.
out_w
=
1
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
2
,
2
]).
astype
(
"int32"
)
self
.
align_corners
=
True
...
...
@@ -147,6 +160,7 @@ class TestNearestNeighborInterpCase5(TestNearestInterpOp):
self
.
input_shape
=
[
3
,
3
,
9
,
6
]
self
.
out_h
=
12
self
.
out_w
=
12
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
11
,
11
]).
astype
(
"int32"
)
self
.
align_corners
=
True
...
...
@@ -157,6 +171,7 @@ class TestNearestNeighborInterpCase6(TestNearestInterpOp):
self
.
input_shape
=
[
1
,
1
,
128
,
64
]
self
.
out_h
=
64
self
.
out_w
=
128
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
65
,
129
]).
astype
(
"int32"
)
self
.
align_corners
=
True
...
...
@@ -167,6 +182,7 @@ class TestNearestNeighborInterpActualShape(TestNearestInterpOp):
self
.
input_shape
=
[
3
,
2
,
32
,
16
]
self
.
out_h
=
64
self
.
out_w
=
32
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
66
,
40
]).
astype
(
"int32"
)
self
.
align_corners
=
True
...
...
@@ -179,7 +195,15 @@ class TestNearestInterpOpUint8(OpTest):
self
.
op_type
=
"nearest_interp"
input_np
=
np
.
random
.
randint
(
low
=
0
,
high
=
256
,
size
=
self
.
input_shape
).
astype
(
"uint8"
)
output_np
=
nearest_neighbor_interp_np
(
input_np
,
self
.
out_h
,
self
.
out_w
,
if
self
.
scale
>
0
:
out_h
=
int
(
self
.
input_shape
[
2
]
*
self
.
scale
)
out_w
=
int
(
self
.
input_shape
[
3
]
*
self
.
scale
)
else
:
out_h
=
self
.
out_h
out_w
=
self
.
out_w
output_np
=
nearest_neighbor_interp_np
(
input_np
,
out_h
,
out_w
,
self
.
out_size
,
self
.
actual_shape
,
self
.
align_corners
)
self
.
inputs
=
{
'X'
:
input_np
}
...
...
@@ -188,6 +212,7 @@ class TestNearestInterpOpUint8(OpTest):
self
.
attrs
=
{
'out_h'
:
self
.
out_h
,
'out_w'
:
self
.
out_w
,
'scale'
:
self
.
scale
,
'interp_method'
:
self
.
interp_method
,
'align_corners'
:
self
.
align_corners
}
...
...
@@ -201,6 +226,7 @@ class TestNearestInterpOpUint8(OpTest):
self
.
input_shape
=
[
1
,
3
,
9
,
6
]
self
.
out_h
=
10
self
.
out_w
=
9
self
.
scale
=
0.
self
.
align_corners
=
True
...
...
@@ -210,6 +236,7 @@ class TestNearestNeighborInterpCase1Uint8(TestNearestInterpOpUint8):
self
.
input_shape
=
[
2
,
3
,
128
,
64
]
self
.
out_h
=
120
self
.
out_w
=
50
self
.
scale
=
0.
self
.
align_corners
=
True
...
...
@@ -219,6 +246,7 @@ class TestNearestNeighborInterpCase2Uint8(TestNearestInterpOpUint8):
self
.
input_shape
=
[
4
,
1
,
7
,
8
]
self
.
out_h
=
5
self
.
out_w
=
13
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
6
,
15
]).
astype
(
"int32"
)
self
.
align_corners
=
True
...
...
@@ -228,5 +256,38 @@ class TestNearestInterpWithoutCorners(TestNearestInterpOp):
self
.
align_corners
=
False
class
TestNearestNeighborInterpScale1
(
TestNearestInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
3
,
2
,
32
,
16
]
self
.
out_h
=
64
self
.
out_w
=
32
self
.
scale
=
2.
self
.
out_size
=
np
.
array
([
66
,
40
]).
astype
(
"int32"
)
self
.
align_corners
=
True
class
TestNearestNeighborInterpScale2
(
TestNearestInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
3
,
2
,
32
,
16
]
self
.
out_h
=
64
self
.
out_w
=
32
self
.
scale
=
1.5
self
.
out_size
=
np
.
array
([
66
,
40
]).
astype
(
"int32"
)
self
.
align_corners
=
True
class
TestNearestNeighborInterpScale3
(
TestNearestInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
3
,
2
,
32
,
16
]
self
.
out_h
=
64
self
.
out_w
=
32
self
.
scale
=
1.
self
.
out_size
=
np
.
array
([
66
,
40
]).
astype
(
"int32"
)
self
.
align_corners
=
True
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录