Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ed1a0536
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ed1a0536
编写于
2月 26, 2018
作者:
Q
Qiao Longfei
提交者:
GitHub
2月 26, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #8545 from jacquesqiao/fix-optimize-multi-program
create learning rate for multi program
上级
2a3b9ff1
ea9e62b8
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
34 addition
and
19 deletion
+34
-19
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+34
-19
未找到文件。
python/paddle/fluid/optimizer.py
浏览文件 @
ed1a0536
...
@@ -36,10 +36,18 @@ class Optimizer(object):
...
@@ -36,10 +36,18 @@ class Optimizer(object):
"""
"""
def
__init__
(
self
,
learning_rate
,
global_step
=
None
,
regularization
=
None
):
def
__init__
(
self
,
learning_rate
,
global_step
=
None
,
regularization
=
None
):
assert
learning_rate
is
not
None
if
not
isinstance
(
learning_rate
,
float
)
and
\
not
isinstance
(
learning_rate
,
framework
.
Variable
):
raise
TypeError
(
"learning rate should be float or Variable"
)
self
.
_global_step
=
global_step
self
.
_global_step
=
global_step
self
.
regularization
=
regularization
self
.
regularization
=
regularization
self
.
_global_learning_rate
=
learning_rate
self
.
_learning_rate
=
learning_rate
# each program should have a independent learning rate
# program -> Variable(learning_rate)
self
.
_learning_rate_map
=
dict
()
if
isinstance
(
self
.
_learning_rate
,
framework
.
Variable
):
self
.
_learning_rate_map
[
framework
.
default_main_program
(
)]
=
self
.
_learning_rate
# Dictionary of accumulators. Some optimizer subclasses need to
# Dictionary of accumulators. Some optimizer subclasses need to
# allocate and manage extra variables associated with the parameters
# allocate and manage extra variables associated with the parameters
# to train. These variables are called accumulators.
# to train. These variables are called accumulators.
...
@@ -48,26 +56,33 @@ class Optimizer(object):
...
@@ -48,26 +56,33 @@ class Optimizer(object):
self
.
helper
=
None
self
.
helper
=
None
def
_create_global_learning_rate
(
self
):
def
_create_global_learning_rate
(
self
):
if
isinstance
(
self
.
_global_learning_rate
,
float
):
lr
=
self
.
global_learning_rate
()
self
.
_global_learning_rate
=
layers
.
create_global_var
(
name
=
unique_name
.
generate
(
"learning_rate"
),
if
isinstance
(
lr
,
framework
.
Variable
):
shape
=
[
1
],
return
value
=
float
(
self
.
_global_learning_rate
),
else
:
dtype
=
'float32'
,
if
not
isinstance
(
self
.
_learning_rate
,
float
):
persistable
=
True
)
raise
TypeError
(
"learning rate variable is create outside optimizer,"
if
not
isinstance
(
self
.
_global_learning_rate
,
framework
.
Variable
):
"can not create new learning rate variable for new program"
)
raise
ValueError
(
"learning rate should be a Variable, "
"actual type is %s"
,
# create learning rate in the current main program
type
(
self
.
_global_learning_rate
))
self
.
_learning_rate_map
[
framework
.
default_main_program
(
)]
=
layers
.
create_global_var
(
@
property
name
=
unique_name
.
generate
(
"learning_rate"
),
def
global_learning_rate
(
self
):
shape
=
[
1
],
value
=
float
(
self
.
_learning_rate
),
dtype
=
'float32'
,
persistable
=
True
)
def
global_learning_rate
(
self
,
program
=
None
):
"""
"""
get global decayed learning rate
get global decayed learning rate
:return:
:return:
"""
"""
return
self
.
_global_learning_rate
if
program
is
None
:
program
=
framework
.
default_main_program
()
return
self
.
_learning_rate_map
.
get
(
program
,
None
)
def
_append_optimize_op
(
self
,
block
,
param_and_grad
):
def
_append_optimize_op
(
self
,
block
,
param_and_grad
):
""" append optimize operator to block and return all the added optimize_op
""" append optimize operator to block and return all the added optimize_op
...
@@ -78,7 +93,7 @@ class Optimizer(object):
...
@@ -78,7 +93,7 @@ class Optimizer(object):
# create learning rate variable for every parameter
# create learning rate variable for every parameter
param
=
param_and_grad
[
0
]
param
=
param_and_grad
[
0
]
param_lr
=
param
.
optimize_attr
[
'learning_rate'
]
param_lr
=
param
.
optimize_attr
[
'learning_rate'
]
return
self
.
_global_learning_rate
*
param_lr
return
self
.
global_learning_rate
()
*
param_lr
def
_create_accumulators
(
self
,
block
,
parameters
):
def
_create_accumulators
(
self
,
block
,
parameters
):
"""Create all accumulators needed by the parameters
"""Create all accumulators needed by the parameters
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录