未验证 提交 ed0e95a8 编写于 作者: z8hanghuan's avatar z8hanghuan 提交者: GitHub

add sequence_unpad for xpu (#44808)

* add sequence_unpad for xpu,*test=kunlun

* add sequence_unpad, *test=kunlun

* fix bug in testcase,should not be sequence_pad,*test=kunlun
上级 2ea1c134
......@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/math/sequence_padding.h"
#include "paddle/fluid/platform/device/device_wrapper.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
......@@ -190,6 +191,50 @@ class UnpaddingLoDTensorFunctor<phi::CPUContext, T> {
}
};
#ifdef PADDLE_WITH_XPU
template <typename T>
class UnpaddingLoDTensorFunctor<platform::XPUDeviceContext, T> {
public:
void operator()(const platform::XPUDeviceContext& context,
const framework::LoDTensor& pad_tensor,
framework::LoDTensor* seq_tensor,
int pad_seq_len = -1,
int lod_level = 0,
bool norm_by_times = false,
const PadLayout layout = kBatchLengthWidth) {
auto seq_offsets = framework::ToAbsOffset(seq_tensor->lod())[lod_level];
const auto& seq_tensor_dims = seq_tensor->dims();
const auto& pad_tensor_dims = pad_tensor.dims();
if (pad_seq_len == -1) {
pad_seq_len = MaximumSequenceLength(seq_offsets);
}
int step_width = seq_tensor->numel() / seq_tensor_dims[0];
CheckDims(seq_tensor_dims,
pad_tensor_dims,
seq_offsets,
pad_seq_len,
step_width,
layout);
const T* pad_data = pad_tensor.data<T>(); // padding tensor x
T* seq_data = seq_tensor->data<T>(); // unpadding tensor y
xpu::VectorParam<int64_t> seq_offsets_param{
reinterpret_cast<int64_t*>(seq_offsets.data()),
static_cast<int>(seq_offsets.size()),
nullptr};
int r = xpu::sequence_unpad<T, int64_t>(context.x_context(),
pad_data,
seq_data,
seq_offsets_param,
pad_seq_len /*max_seqlen*/,
step_width /*dim*/);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "sequence_unpad");
}
};
#endif
template class PaddingLoDTensorFunctor<phi::CPUContext, int>;
template class PaddingLoDTensorFunctor<phi::CPUContext, int64_t>;
template class PaddingLoDTensorFunctor<phi::CPUContext, float>;
......@@ -200,6 +245,10 @@ template class UnpaddingLoDTensorFunctor<phi::CPUContext, int64_t>;
template class UnpaddingLoDTensorFunctor<phi::CPUContext, float>;
template class UnpaddingLoDTensorFunctor<phi::CPUContext, double>;
#ifdef PADDLE_WITH_XPU
template class UnpaddingLoDTensorFunctor<platform::XPUDeviceContext, float>;
#endif
} // namespace math
} // namespace operators
} // namespace paddle
......@@ -38,7 +38,8 @@ class SequenceUnpadOpKernel : public framework::OpKernel<T> {
auto& dev_ctx = ctx.template device_context<DeviceContext>();
framework::Tensor seq_len_cpu =
ctx.AllocateTmpTensor<T, DeviceContext>(len_t->dims(), dev_ctx);
if (platform::is_gpu_place(ctx.GetPlace())) {
if (platform::is_gpu_place(ctx.GetPlace()) ||
platform::is_xpu_place(ctx.GetPlace())) {
seq_len_cpu.mutable_data<int64_t>(platform::CPUPlace());
framework::TensorCopySync(*len_t, platform::CPUPlace(), &seq_len_cpu);
} else {
......
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/sequence_ops/sequence_unpad_op.h"
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(
sequence_unpad,
ops::SequenceUnpadOpKernel<paddle::platform::XPUDeviceContext, float>);
#endif
......@@ -545,7 +545,8 @@ XPUOpMap& get_kl2_ops() {
XPUKernelSet({pOpKernelType(vartype::FP32, XPUPlace())})},
{"sequence_conv_grad",
XPUKernelSet({pOpKernelType(vartype::FP32, XPUPlace())})},
{"sequence_unpad",
XPUKernelSet({pOpKernelType(vartype::FP32, XPUPlace())})},
// Fused op
{"resnet_basic_block_grad",
XPUKernelSet({pOpKernelType(vartype::FP32, XPUPlace())})},
......
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import six
import numpy as np
import sys
sys.path.append("..")
import paddle
import paddle.fluid as fluid
import unittest
import numpy as np
from op_test import OpTest
from op_test_xpu import XPUOpTest
from paddle.fluid.framework import Program, program_guard
from xpu.get_test_cover_info import create_test_class, get_xpu_op_support_types, XPUOpTestWrapper
paddle.enable_static()
class XPUTestSequenceUnpadOp(XPUOpTestWrapper):
def __init__(self):
self.op_name = 'sequence_unpad'
self.use_dynamic_create_class = False
class TestSequenceUnpadOp(XPUOpTest):
def setUp(self):
self.init_dtype()
self.initTestCase()
self.set_xpu()
self.op_type = 'sequence_unpad'
self.place = paddle.XPUPlace(0)
self.compute()
def init_dtype(self):
self.dtype = self.in_type
def set_xpu(self):
self.__class__.use_xpu = True
self.__class__.no_need_check_grad = True
def test_check_output(self):
self.check_output_with_place(self.place)
def initTestCase(self):
self.length = [2, 3, 4]
self.x_shape = (3, 40)
def compute(self):
assert len(self.length) == self.x_shape[0]
x = np.random.random(self.x_shape).astype(self.dtype)
out_lod = [self.length]
out = x[0, 0:self.length[0]]
for i in six.moves.xrange(1, x.shape[0]):
out = np.append(out, x[i, 0:self.length[i]], axis=0)
out_shape = (sum(self.length), )
if len(self.x_shape) == 2:
out_shape = out_shape + (1, )
else:
out_shape = out_shape + self.x_shape[2:]
self.inputs = {
'X': x,
'Length': np.array(self.length).astype('int64')
}
self.outputs = {'Out': (out.reshape(out_shape), out_lod)}
class TestSequenceUnpadOp2(TestSequenceUnpadOp):
def initTestCase(self):
self.length = [2, 3, 4]
self.x_shape = (3, 5, 4, 3)
class TestSequenceUnpadOp3(TestSequenceUnpadOp):
def initTestCase(self):
self.length = [5, 2, 3, 4]
self.x_shape = (4, 5, 3, 3, 6)
class TestSequenceUnpadOp4(TestSequenceUnpadOp):
def initTestCase(self):
self.length = [5, 5, 5, 5]
self.x_shape = (4, 5, 3, 3, 6)
class TestSequenceUnpadOp5(TestSequenceUnpadOp):
def initTestCase(self):
self.length = [1, 4, 3, 1]
self.x_shape = (4, 5, 3, 3, 6)
class TestSequenceUnpadOpError(unittest.TestCase):
def test_error(self):
"""
The type of 'x' in fluid.layers.sequence_unpad must be <class 'paddle.fluid.framework.Variable'>, but received <class 'numpy.ndarray'>.
"""
def test_x_variable():
x = np.random.random((10, 5)).astype("float64")
len = fluid.data(name='length2', shape=[10], dtype='int64')
fluid.layers.sequence_unpad(x=x, length=len)
self.assertRaises(TypeError, test_x_variable)
"""
The type of 'length' in fluid.layers.sequence_unpad must be <class 'paddle.fluid.framework.Variable'>, but received <class 'numpy.ndarray'>.
"""
def test_length_variable():
x1 = fluid.data(name='x1', shape=[10, 5], dtype='float32')
len1 = np.random.random((10)).astype("int64")
fluid.layers.sequence_unpad(x=x1, length=len1)
self.assertRaises(TypeError, test_length_variable)
"""
The data type of 'x' in fluid.layers.sequence_unpad must be ['float32', 'float64', 'int32', 'int64'], but received float16
"""
def test_x_dtype():
x2 = fluid.data(name='x2', shape=[10, 5], dtype='float16')
len2 = fluid.data(name='length2', shape=[10], dtype='int64')
fluid.layers.sequence_unpad(x=x2, length=len2)
self.assertRaises(TypeError, test_x_dtype)
"""
The data type of 'length' in fluid.layers.sequence_unpad must be ['int64'], but received int32
"""
def test_length_dtype():
x3 = fluid.data(name='x3', shape=[10, 5], dtype='float64')
len3 = fluid.data(name='length3', shape=[10], dtype='int32')
fluid.layers.sequence_unpad(x=x3, length=len3)
self.assertRaises(TypeError, test_length_dtype)
support_types = get_xpu_op_support_types('sequence_unpad')
for stype in support_types:
create_test_class(globals(), XPUTestSequenceUnpadOp, stype)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册